BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 22160087)

  • 21. Gene mutations and clonal architecture in myelodysplastic syndromes and changes upon progression to acute myeloid leukaemia and under treatment.
    Stosch JM; Heumüller A; Niemöller C; Bleul S; Rothenberg-Thurley M; Riba J; Renz N; Szarc Vel Szic K; Pfeifer D; Follo M; Pahl HL; Zimmermann S; Duyster J; Wehrle J; Lübbert M; Metzeler KH; Claus R; Becker H
    Br J Haematol; 2018 Sep; 182(6):830-842. PubMed ID: 29974943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concurrent mutations in other epigenetic modulators portend better prognosis in BCOR-mutated myelodysplastic syndrome.
    Badaat I; Mirza S; Padron E; Sallman D; Komrokji R; Song J; Hussaini MO
    J Clin Pathol; 2020 Apr; 73(4):209-212. PubMed ID: 31771970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes.
    Thol F; Friesen I; Damm F; Yun H; Weissinger EM; Krauter J; Wagner K; Chaturvedi A; Sharma A; Wichmann M; Göhring G; Schumann C; Bug G; Ottmann O; Hofmann WK; Schlegelberger B; Heuser M; Ganser A
    J Clin Oncol; 2011 Jun; 29(18):2499-506. PubMed ID: 21576631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetics of myelodysplastic syndromes.
    Itzykson R; Fenaux P
    Leukemia; 2014 Mar; 28(3):497-506. PubMed ID: 24247656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Research progress on mechanism of MDS transformation into AML].
    Wang LL; Gao C; Chen BA
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2011 Feb; 19(1):254-9. PubMed ID: 21362264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative study of EZH2 mutational status, copy number, protein expression and H3K27 trimethylation in AML/MDS patients.
    Stomper J; Meier R; Ma T; Pfeifer D; Ihorst G; Blagitko-Dorfs N; Greve G; Zimmer D; Platzbecker U; Hagemeijer A; Schmitt-Graeff I; Lübbert M
    Clin Epigenetics; 2021 Apr; 13(1):77. PubMed ID: 33845873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epigenetics in myelodysplastic syndromes.
    Heuser M; Yun H; Thol F
    Semin Cancer Biol; 2018 Aug; 51():170-179. PubMed ID: 28778402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Genomic aberrations in myelodysplastic syndromes and related disorders].
    Makishima H
    Rinsho Ketsueki; 2019; 60(6):600-609. PubMed ID: 31281151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating genetics and epigenetics in myelodysplastic syndromes: advances in pathogenesis and disease evolution.
    Bravo GM; Lee E; Merchan B; Kantarjian HM; García-Manero G
    Br J Haematol; 2014 Sep; 166(5):646-59. PubMed ID: 24903747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Genetic Landscape of Myelodysplastic Neoplasm Progression to Acute Myeloid Leukemia.
    Bănescu C; Tripon F; Muntean C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia.
    Gelsi-Boyer V; Trouplin V; Adélaïde J; Bonansea J; Cervera N; Carbuccia N; Lagarde A; Prebet T; Nezri M; Sainty D; Olschwang S; Xerri L; Chaffanet M; Mozziconacci MJ; Vey N; Birnbaum D
    Br J Haematol; 2009 Jun; 145(6):788-800. PubMed ID: 19388938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Impact of Epigenetic Modifications in Myeloid Malignancies.
    Venney D; Mohd-Sarip A; Mills KI
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34065087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in understanding the molecular pathogenesis of myelodysplastic syndromes.
    Kulasekararaj AG; Mohamedali AM; Mufti GJ
    Br J Haematol; 2013 Sep; 162(5):587-605. PubMed ID: 23869491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetics of MDS.
    Ogawa S
    Blood; 2019 Mar; 133(10):1049-1059. PubMed ID: 30670442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How recent advances in high-risk myelodysplastic syndrome physiopathology may impact future treatments.
    Cluzeau T; Robert G; Jacquel A; Auberger P
    Curr Pharm Des; 2013; 19(30):5362-73. PubMed ID: 23394086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myelodysplastic syndromes: Contemporary review and how we treat.
    Gangat N; Patnaik MM; Tefferi A
    Am J Hematol; 2016 Jan; 91(1):76-89. PubMed ID: 26769228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of DNA methylation in the pathogenesis and treatment of myelodysplastic syndromes.
    Khan H; Vale C; Bhagat T; Verma A
    Semin Hematol; 2013 Jan; 50(1):16-37. PubMed ID: 23507481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The myelodysplastic syndrome as a prototypical epigenetic disease.
    Issa JP
    Blood; 2013 May; 121(19):3811-7. PubMed ID: 23660859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Pathogenesis and Treatment of Myelodysplastic Syndromes.
    Nakajima H
    Intern Med; 2021 Jan; 60(1):15-23. PubMed ID: 32009100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The epigenomics revolution in myelodysplasia: a clinico-pathological perspective.
    Tan PT; Wei AH
    Pathology; 2011 Oct; 43(6):536-46. PubMed ID: 21881538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.