These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22160103)

  • 61. Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells.
    Hara K; Zhao ZG; Cui Y; Miyauchi M; Miyashita M; Mori S
    Langmuir; 2011 Oct; 27(20):12730-6. PubMed ID: 21942210
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cost-effective dye-sensitized solar cells consisting of two metal foils instead of transparent conductive oxide glass.
    Yun HG; Kim M; Kang MG; Lee IH
    Phys Chem Chem Phys; 2012 May; 14(18):6448-51. PubMed ID: 22466304
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Novel counter electrode catalysts of niobium oxides supersede Pt for dye-sensitized solar cells.
    Lin X; Wu M; Wang Y; Hagfeldt A; Ma T
    Chem Commun (Camb); 2011 Nov; 47(41):11489-91. PubMed ID: 21952493
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Facile synthesis of TiO2 inverse opal electrodes for dye-sensitized solar cells.
    Shin JH; Kang JH; Jin WM; Park JH; Cho YS; Moon JH
    Langmuir; 2011 Jan; 27(2):856-60. PubMed ID: 21155579
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.
    Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB
    Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic performance of dye-sensitized solar cells.
    Zhou ZJ; Fan JQ; Wang X; Zhou WH; Du ZL; Wu SX
    ACS Appl Mater Interfaces; 2011 Nov; 3(11):4349-53. PubMed ID: 21966998
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells.
    Kavan L; Yum JH; Nazeeruddin MK; Grätzel M
    ACS Nano; 2011 Nov; 5(11):9171-8. PubMed ID: 21995546
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simple approach for enhancement of light harvesting efficiency of dye-sensitized solar cells by polymeric mirror.
    Lee JY; Lee S; Park JK; Jun Y; Lee YG; Kim KM; Yun JH; Cho KY
    Opt Express; 2010 Nov; 18 Suppl 4():A522-7. PubMed ID: 21165084
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Correlating titania morphology and chemical composition with dye-sensitized solar cell performance.
    Santulli AC; Koenigsmann C; Tiano AL; DeRosa D; Wong SS
    Nanotechnology; 2011 Jun; 22(24):245402. PubMed ID: 21508451
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Highly efficient fibrous dye-sensitized solar cells based on TiO2 nanotube arrays.
    Huang S; Guo X; Huang X; Zhang Q; Sun H; Li D; Luo Y; Meng Q
    Nanotechnology; 2011 Aug; 22(31):315402. PubMed ID: 21737872
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.
    Liu B; Aydil ES
    J Am Chem Soc; 2009 Mar; 131(11):3985-90. PubMed ID: 19245201
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells.
    Yang N; Zhai J; Wang D; Chen Y; Jiang L
    ACS Nano; 2010 Feb; 4(2):887-94. PubMed ID: 20088539
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells.
    Joshi P; Zhang L; Chen Q; Galipeau D; Fong H; Qiao Q
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3572-7. PubMed ID: 21073177
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of dye-adsorption solvent on the performances of the dye-sensitized solar cells based on black dye.
    Ozawa H; Awa M; Ono T; Arakawa H
    Chem Asian J; 2012 Jan; 7(1):156-62. PubMed ID: 22114015
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode.
    Kawano R; Katakabe T; Shimosawa H; Nazeeruddin MK; Grätzel M; Matsui H; Kitamura T; Tanabe N; Watanabe M
    Phys Chem Chem Phys; 2010 Feb; 12(8):1916-21. PubMed ID: 20145859
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite.
    Gao E; Wang W; Shang M; Xu J
    Phys Chem Chem Phys; 2011 Feb; 13(7):2887-93. PubMed ID: 21161101
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A novel hole transport material for iodine-free solid state dye-sensitized solar cells.
    Song IY; Park SH; Lim J; Kwon YS; Park T
    Chem Commun (Camb); 2011 Oct; 47(37):10395-7. PubMed ID: 21833420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.