BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 22160394)

  • 1. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers.
    Cui G; Song B; Turki HW; McCarty NA
    Pflugers Arch; 2012 Mar; 463(3):405-18. PubMed ID: 22160394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel.
    Gupta J; Linsdell P
    Pflugers Arch; 2002 Mar; 443(5-6):739-47. PubMed ID: 11889571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing an open CFTR pore with organic anion blockers.
    Zhou Z; Hu S; Hwang TC
    J Gen Physiol; 2002 Nov; 120(5):647-62. PubMed ID: 12407077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular determinants of Au(CN)(2)(-) binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl(-) channel pore.
    Gong X; Burbridge SM; Cowley EA; Linsdell P
    J Physiol; 2002 Apr; 540(Pt 1):39-47. PubMed ID: 11927667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore.
    Zhang ZR; Zeltwanger S; McCarty NA
    J Membr Biol; 2004 May; 199(1):15-28. PubMed ID: 15366420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations at arginine 352 alter the pore architecture of CFTR.
    Cui G; Zhang ZR; O'Brien AR; Song B; McCarty NA
    J Membr Biol; 2008 Mar; 222(2):91-106. PubMed ID: 18421494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent interactions of glibenclamide with CFTR: kinetically complex block of macroscopic currents.
    Zhang ZR; Cui G; Zeltwanger S; McCarty NA
    J Membr Biol; 2004 Oct; 201(3):139-55. PubMed ID: 15711774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a region of strong discrimination in the pore of CFTR.
    McCarty NA; Zhang ZR
    Am J Physiol Lung Cell Mol Physiol; 2001 Oct; 281(4):L852-67. PubMed ID: 11557589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Linsdell P
    J Physiol; 2001 Feb; 531(Pt 1):51-66. PubMed ID: 11179391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolbutamide causes open channel blockade of cystic fibrosis transmembrane conductance regulator Cl- channels.
    Venglarik CJ; Schultz BD; DeRoos AD; Singh AK; Bridges RJ
    Biophys J; 1996 Jun; 70(6):2696-703. PubMed ID: 8744307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line.
    Sheppard DN; Robinson KA
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):333-46. PubMed ID: 9306276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis transmembrane conductance regulator (CFTR) confers glibenclamide sensitivity to outwardly rectifying chloride channel (ORCC) in Hi-5 insect cells.
    Julien M; Verrier B; Cerutti M; Chappe V; Gola M; Devauchelle G; Becq F
    J Membr Biol; 1999 Apr; 168(3):229-39. PubMed ID: 10191357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; McDonough SI; McCarty NA
    Biophys J; 2000 Jul; 79(1):298-313. PubMed ID: 10866956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore.
    Gupta J; Lindsell P
    Mol Membr Biol; 2003; 20(1):45-52. PubMed ID: 12745925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore.
    Negoda A; Hogan MS; Cowley EA; Linsdell P
    Cell Mol Life Sci; 2019 Jun; 76(12):2411-2423. PubMed ID: 30758641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore.
    Zhou JJ; Li MS; Qi J; Linsdell P
    J Gen Physiol; 2010 Mar; 135(3):229-45. PubMed ID: 20142516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.