These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator. Chen EY; Bartlett MC; Loo TW; Clarke DM J Biol Chem; 2004 Sep; 279(38):39620-7. PubMed ID: 15272010 [TBL] [Abstract][Full Text] [Related]
23. Potent inhibition of the CFTR chloride channel by suramin. Bachmann A; Russ U; Quast U Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):473-6. PubMed ID: 10551285 [TBL] [Abstract][Full Text] [Related]
24. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction. McNicholas CM; Nason MW; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME Am J Physiol; 1997 Nov; 273(5):F843-8. PubMed ID: 9374850 [TBL] [Abstract][Full Text] [Related]
25. Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore. Negoda A; Hogan MS; Cowley EA; Linsdell P Cell Mol Life Sci; 2019 Jun; 76(12):2411-2423. PubMed ID: 30758641 [TBL] [Abstract][Full Text] [Related]
26. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid. Scott-Ward TS; Li H; Schmidt A; Cai Z; Sheppard DN Mol Membr Biol; 2004; 21(1):27-38. PubMed ID: 14668136 [TBL] [Abstract][Full Text] [Related]
27. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating. Fu J; Ji HL; Naren AP; Kirk KL J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681 [TBL] [Abstract][Full Text] [Related]
28. The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions. Qian F; Liu L; Liu Z; Lu C Physiol Res; 2016 Jul; 65(3):505-15. PubMed ID: 27070741 [TBL] [Abstract][Full Text] [Related]
29. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Wang W; El Hiani Y; Rubaiy HN; Linsdell P Pflugers Arch; 2014 Mar; 466(3):477-90. PubMed ID: 23955087 [TBL] [Abstract][Full Text] [Related]
30. Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101. Stahl M; Stahl K; Brubacher MB; Forrest JN Am J Physiol Cell Physiol; 2012 Jan; 302(1):C67-76. PubMed ID: 21940661 [TBL] [Abstract][Full Text] [Related]
31. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. Cui G; Rahman KS; Infield DT; Kuang C; Prince CZ; McCarty NA J Gen Physiol; 2014 Aug; 144(2):159-79. PubMed ID: 25024266 [TBL] [Abstract][Full Text] [Related]
32. Interactions between permeant and blocking anions inside the CFTR chloride channel pore. Linsdell P Biochim Biophys Acta; 2015 Jul; 1848(7):1573-90. PubMed ID: 25892339 [TBL] [Abstract][Full Text] [Related]
33. Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Linsdell P J Biol Chem; 2005 Mar; 280(10):8945-50. PubMed ID: 15634668 [TBL] [Abstract][Full Text] [Related]
34. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain. Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864 [TBL] [Abstract][Full Text] [Related]
35. Voltage-dependent flickery block of an open cystic fibrosis transmembrane conductance regulator (CFTR) channel pore. Zhou Z; Hu S; Hwang TC J Physiol; 2001 Apr; 532(Pt 2):435-48. PubMed ID: 11306662 [TBL] [Abstract][Full Text] [Related]
36. Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region. Gupta J; Evagelidis A; Hanrahan JW; Linsdell P Biochemistry; 2001 Jun; 40(22):6620-7. PubMed ID: 11380256 [TBL] [Abstract][Full Text] [Related]
37. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
38. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating. Wang W; Linsdell P Biochim Biophys Acta; 2012 Mar; 1818(3):851-60. PubMed ID: 22234285 [TBL] [Abstract][Full Text] [Related]
39. Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes. Suaud L; Carattino M; Kleyman TR; Rubenstein RC J Biol Chem; 2002 Dec; 277(52):50341-7. PubMed ID: 12386156 [TBL] [Abstract][Full Text] [Related]
40. Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Alexander C; Ivetac A; Liu X; Norimatsu Y; Serrano JR; Landstrom A; Sansom M; Dawson DC Biochemistry; 2009 Oct; 48(42):10078-88. PubMed ID: 19754156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]