BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22160493)

  • 1. PSS-3D1D: an improved 3D1D profile method of protein fold recognition for the annotation of twilight zone sequences.
    Ganesan K; Parthasarathy S
    J Struct Funct Genomics; 2011 Dec; 12(4):181-9. PubMed ID: 22160493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PredictSuperFam-PSS-3D1D: A server for predicting superfamily for the annotation of twilight zone protein sequences.
    Muthuvel Prasath K; Ganesan K; Parthasarathy S
    J Struct Biol; 2020 May; 210(2):107479. PubMed ID: 32081792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A protein block based fold recognition method for the annotation of twilight zone sequences.
    Suresh V; Ganesan K; Parthasarathy S
    Protein Pept Lett; 2013 Mar; 20(3):249-54. PubMed ID: 22591480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences.
    Mizianty MJ; Kurgan L
    BMC Bioinformatics; 2009 Dec; 10():414. PubMed ID: 20003388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.
    Kurgan L; Cios K; Chen K
    BMC Bioinformatics; 2008 May; 9():226. PubMed ID: 18452616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DescFold: a web server for protein fold recognition.
    Yan RX; Si JN; Wang C; Zhang Z
    BMC Bioinformatics; 2009 Dec; 10():416. PubMed ID: 20003426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards comprehensive structural motif mining for better fold annotation in the "twilight zone" of sequence dissimilarity.
    Jia Y; Huan J; Buhr V; Zhang J; Carayannopoulos LN
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S46. PubMed ID: 19208148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation.
    Capriotti E; Calabrese R; Fariselli P; Martelli PL; Altman RB; Casadio R
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S6. PubMed ID: 23819482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein folds and families: sequence and structure alignments.
    Holm L; Sander C
    Nucleic Acids Res; 1999 Jan; 27(1):244-7. PubMed ID: 9847191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (PS)2-v2: template-based protein structure prediction server.
    Chen CC; Hwang JK; Yang JM
    BMC Bioinformatics; 2009 Oct; 10():366. PubMed ID: 19878598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KB-Rank: efficient protein structure and functional annotation identification via text query.
    Julfayev ES; McLaughlin RJ; Tao YP; McLaughlin WA
    J Struct Funct Genomics; 2012 Jun; 13(2):101-10. PubMed ID: 22270457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a structural alphabet to find compatible folds for amino acid sequences.
    Mahajan S; de Brevern AG; Sanejouand YH; Srinivasan N; Offmann B
    Protein Sci; 2015 Jan; 24(1):145-53. PubMed ID: 25297700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General overview on structure prediction of twilight-zone proteins.
    Khor BY; Tye GJ; Lim TS; Choong YS
    Theor Biol Med Model; 2015 Sep; 12():15. PubMed ID: 26338054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MODBASE, a database of annotated comparative protein structure models, and associated resources.
    Pieper U; Eswar N; Braberg H; Madhusudhan MS; Davis FP; Stuart AC; Mirkovic N; Rossi A; Marti-Renom MA; Fiser A; Webb B; Greenblatt D; Huang CC; Ferrin TE; Sali A
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D217-22. PubMed ID: 14681398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iterative sequence/secondary structure search for protein homologs: comparison with amino acid sequence alignments and application to fold recognition in genome databases.
    Wallqvist A; Fukunishi Y; Murphy LR; Fadel A; Levy RM
    Bioinformatics; 2000 Nov; 16(11):988-1002. PubMed ID: 11159310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRalanyzer: a tool for functional analysis of fold-recognition sequence-structure alignments.
    Saini HK; Fischer D
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W499-502. PubMed ID: 17537819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Protein Fold Recognition by Deep Learning Networks.
    Jo T; Hou J; Eickholt J; Cheng J
    Sci Rep; 2015 Dec; 5():17573. PubMed ID: 26634993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of protein fold comparison servers.
    Novotny M; Madsen D; Kleywegt GJ
    Proteins; 2004 Feb; 54(2):260-70. PubMed ID: 14696188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.