These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22160690)

  • 1. Antagonistic gene transcripts regulate adaptation to new growth environments.
    Baumgartner BL; Bennett MR; Ferry M; Johnson TL; Tsimring LS; Hasty J
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21087-92. PubMed ID: 22160690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae.
    Hawkins KM; Smolke CD
    J Biol Chem; 2006 May; 281(19):13485-13492. PubMed ID: 16524886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring competitive fitness in dynamic environments.
    Razinkov IA; Baumgartner BL; Bennett MR; Tsimring LS; Hasty J
    J Phys Chem B; 2013 Oct; 117(42):13175-81. PubMed ID: 23841812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic Transcriptional Memory of
    Sood V; Cajigas I; D'Urso A; Light WH; Brickner JH
    Genetics; 2017 Aug; 206(4):1895-1907. PubMed ID: 28607146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structure of Saccharomyces cerevisiae Gal1p, a bifunctional galactokinase and transcriptional inducer.
    Thoden JB; Sellick CA; Timson DJ; Reece RJ; Holden HM
    J Biol Chem; 2005 Nov; 280(44):36905-11. PubMed ID: 16115868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactose induction of the GAL1 gene requires conditional degradation of the Mig2 repressor.
    Lim MK; Siew WL; Zhao J; Tay YC; Ang E; Lehming N
    Biochem J; 2011 May; 435(3):641-9. PubMed ID: 21323640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimodal expression of yeast GAL genes is controlled by a long non-coding RNA and a bifunctional galactokinase.
    Zacharioudakis I; Tzamarias D
    Biochem Biophys Res Commun; 2017 Apr; 486(1):63-69. PubMed ID: 28254434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gal3 Binds Gal80 Tighter than Gal1 Indicating Adaptive Protein Changes Following Duplication.
    Lavy T; Yanagida H; Tawfik DS
    Mol Biol Evol; 2016 Feb; 33(2):472-7. PubMed ID: 26516093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Gal4p by galactose-dependent interaction of galactokinase and Gal80p.
    Zenke FT; Engles R; Vollenbroich V; Meyer J; Hollenberg CP; Breunig KD
    Science; 1996 Jun; 272(5268):1662-5. PubMed ID: 8658143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay of a ligand sensor and an enzyme in controlling expression of the Saccharomyces cerevisiae GAL genes.
    Abramczyk D; Holden S; Page CJ; Reece RJ
    Eukaryot Cell; 2012 Mar; 11(3):334-42. PubMed ID: 22210830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on d-galactose.
    Seiboth B; Hartl L; Pail M; Fekete E; Karaffa L; Kubicek CP
    Mol Microbiol; 2004 Feb; 51(4):1015-25. PubMed ID: 14763977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth-independent regulation of CLN3 mRNA levels by nutrients in Saccharomyces cerevisiae.
    Parviz F; Heideman W
    J Bacteriol; 1998 Jan; 180(2):225-30. PubMed ID: 9440509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The regulatable MAL32 promoter in Saccharomyces cerevisiae: characteristics and tools to facilitate its use.
    Meurer M; Chevyreva V; Cerulus B; Knop M
    Yeast; 2017 Jan; 34(1):39-49. PubMed ID: 27714848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A yeast catabolic enzyme controls transcriptional memory.
    Zacharioudakis I; Gligoris T; Tzamarias D
    Curr Biol; 2007 Dec; 17(23):2041-6. PubMed ID: 17997309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex.
    Platt A; Reece RJ
    EMBO J; 1998 Jul; 17(14):4086-91. PubMed ID: 9670023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional expression of the maize mitochondrial URF13 down-regulates galactose-induced GAL1 gene expression in Saccharomyces cerevisiae.
    Ferreira Júnior JR; Ramos AS; Chambergo FS; Stambuk BU; Muschellack LK; Schumacher R; El-Dorry H
    Biochem Biophys Res Commun; 2006 Jan; 339(1):30-6. PubMed ID: 16297867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose.
    Das Adhikari AK; Qureshi MT; Kar RK; Bhat PJ
    Mol Microbiol; 2014 Oct; 94(1):202-17. PubMed ID: 25135592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding.
    Anders A; Lilie H; Franke K; Kapp L; Stelling J; Gilles ED; Breunig KD
    J Biol Chem; 2006 Sep; 281(39):29337-48. PubMed ID: 16867978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae.
    Kar RK; Qureshi MT; DasAdhikari AK; Zahir T; Venkatesh KV; Bhat PJ
    FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon.
    Bhat PJ; Hopper JE
    Mol Cell Biol; 1992 Jun; 12(6):2701-7. PubMed ID: 1317007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.