BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22160713)

  • 1. Rapid experience-dependent plasticity of synapse function and structure in ferret visual cortex in vivo.
    Yu H; Majewska AK; Sur M
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21235-40. PubMed ID: 22160713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation.
    Oray S; Majewska A; Sur M
    Neuron; 2004 Dec; 44(6):1021-30. PubMed ID: 15603744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Swept contrast visual evoked potentials and their plasticity following monocular deprivation in mice.
    Lickey ME; Pham TA; Gordon B
    Vision Res; 2004 Dec; 44(28):3381-7. PubMed ID: 15536006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-dependent regulation of CaMKII activity within single visual cortex synapses in vivo.
    Mower AF; Kwok S; Yu H; Majewska AK; Okamoto K; Hayashi Y; Sur M
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21241-6. PubMed ID: 22160721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex.
    Zhou Y; Lai B; Gan WB
    Sci Rep; 2017 Jul; 7(1):4977. PubMed ID: 28694464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex.
    Tropea D; Majewska AK; Garcia R; Sur M
    J Neurosci; 2010 Aug; 30(33):11086-95. PubMed ID: 20720116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.
    Mower AF; Liao DS; Nestler EJ; Neve RL; Ramoa AS
    J Neurosci; 2002 Mar; 22(6):2237-45. PubMed ID: 11896163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex.
    He HY; Hodos W; Quinlan EM
    J Neurosci; 2006 Mar; 26(11):2951-5. PubMed ID: 16540572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporally coherent visual stimuli boost ocular dominance plasticity.
    Matthies U; Balog J; Lehmann K
    J Neurosci; 2013 Jul; 33(29):11774-8. PubMed ID: 23864666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex.
    Khibnik LA; Cho KK; Bear MF
    Neuron; 2010 May; 66(4):493-500. PubMed ID: 20510854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The critical period for ocular dominance plasticity in the Ferret's visual cortex.
    Issa NP; Trachtenberg JT; Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1999 Aug; 19(16):6965-78. PubMed ID: 10436053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex.
    Sun YJ; Espinosa JS; Hoseini MS; Stryker MP
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21812-21820. PubMed ID: 31591211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different mechanisms for loss and recovery of binocularity in the visual cortex.
    Liao DS; Mower AF; Neve RL; Sato-Bigbee C; Ramoa AS
    J Neurosci; 2002 Oct; 22(20):9015-23. PubMed ID: 12388608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat.
    Silver MA; Stryker MP
    J Neurosci; 1999 Dec; 19(24):10829-42. PubMed ID: 10594065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex.
    Kuhlman SJ; Olivas ND; Tring E; Ikrar T; Xu X; Trachtenberg JT
    Nature; 2013 Sep; 501(7468):543-6. PubMed ID: 23975100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.