These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22161315)

  • 1. Using the pollen viability and morphology for fluoride pollution biomonitoring.
    Malayeri BE; Noori M; Jafari M
    Biol Trace Elem Res; 2012 Jun; 147(1-3):315-9. PubMed ID: 22161315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air quality biomonitoring through pollen viability of Fabaceae.
    Duro A; Piccione V; Zampino D
    Environ Monit Assess; 2013 May; 185(5):3803-17. PubMed ID: 22976116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing allergy potency of Zinnia pollen grains in polluted areas.
    Chehregani A; Majde A; Moin M; Gholami M; Ali Shariatzadeh M; Nassiri H
    Ecotoxicol Environ Saf; 2004 Jun; 58(2):267-72. PubMed ID: 15157582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrospective biomonitoring: a hundred years of environmental pollution at selected areas in Slovakia.
    Micieta K; Murín G
    J Environ Pathol Toxicol Oncol; 1999; 18(4):335-8. PubMed ID: 15281246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air quality biomonitoring: assessment of air pollution genotoxicity in the Province of Novara (North Italy) by using Trifolium repens L. and molecular markers.
    Piraino F; Aina R; Palin L; Prato N; Sgorbati S; Santagostino A; Citterio S
    Sci Total Environ; 2006 Dec; 372(1):350-9. PubMed ID: 17055033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of air pollution on cup a 3 allergen in Cupressus arizonica pollen grains.
    Suárez-Cervera M; Castells T; Vega-Maray A; Civantos E; del Pozo V; Fernández-González D; Moreno-Grau S; Moral A; López-Iglesias C; Lahoz C; Seoane-Camba JA
    Ann Allergy Asthma Immunol; 2008 Jul; 101(1):57-66. PubMed ID: 18681086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.).
    Samecka-Cymerman A; Stankiewicz A; Kolon K; Kempers AJ
    Environ Pollut; 2009 Jul; 157(7):2061-5. PubMed ID: 19282074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of heavy metal pollution in Republic of Macedonia using a plant assay.
    Gjorgieva D; Kadifkova-Panovska T; Bačeva K; Stafilov T
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):233-40. PubMed ID: 20508923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the effect of heavy metals on developmental stages of anther and pollen in Chenopodium botrys L. (Chenopodiaceae).
    Yousefi N; Chehregani A; Malayeri B; Lorestani B; Cheraghi M
    Biol Trace Elem Res; 2011 Jun; 140(3):368-76. PubMed ID: 20499206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palynological investigation of some selected species of family Fabaceae from Pakistan, using light and scanning electron microscopy techniques.
    Khan I; Akhtar N; Khan SA
    Microsc Res Tech; 2020 Mar; 83(3):223-231. PubMed ID: 31729113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the heavy metals on developmental stages of ovule, pollen, and root proteins in Reseda lutea L. (Resedaceae).
    Mohsenzadeh F; Chehregani A; Yousefi N
    Biol Trace Elem Res; 2011 Dec; 143(3):1777-88. PubMed ID: 21394513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of morphological and molecular composition changes in allergenic Artemisia vulgaris L. pollen under traffic pollution using SEM and FTIR spectroscopy.
    Depciuch J; Kasprzyk I; Roga E; Parlinska-Wojtan M
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):23203-23214. PubMed ID: 27604125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining the heavy metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L.
    Celik A; Kartal AA; Akdoğan A; Kaska Y
    Environ Int; 2005 Jan; 31(1):105-12. PubMed ID: 15607784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pollen calendar of the city of Salamanca (Spain). Aeropalynological analysis for 1981-1982 and 1991-1992.
    Hernández Prieto M; Lorente Toledano F; Romo Cortina A; Dávila González I; Laffond Yges E; Calvo Bullón A
    Allergol Immunopathol (Madr); 1998; 26(5):209-22. PubMed ID: 9885728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils.
    Brougham KM; Roberts SR; Davison AW; Port GR
    Environ Pollut; 2013 Jul; 178():89-96. PubMed ID: 23545342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Air pollution biomonitoring with plants and fungi: concepts and uses].
    Cuny D
    Ann Pharm Fr; 2012 Jul; 70(4):182-7. PubMed ID: 22818259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ability of cold-tolerant plants to grow in hydrocarbon-contaminated soil.
    Robson DB; Knight JD; Farrell RE; Germida JJ
    Int J Phytoremediation; 2003; 5(2):105-23. PubMed ID: 12929494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active biomonitoring of heavy metal pollution using Rosa rugosa plants.
    Calzoni GL; Antognoni F; Pari E; Fonti P; Gnes A; Speranza A
    Environ Pollut; 2007 Sep; 149(2):239-45. PubMed ID: 17321656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zonal cultivars of field crops as a reserve for the phytoremediation of fluorides polluted soils.
    Sokolova LG; Zorina SY; Belousova EN
    Int J Phytoremediation; 2019; 21(6):577-582. PubMed ID: 30656957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lolium perenne as a biomonitor of atmospheric levels of fluoride.
    Rey-Asensio A; Carballeira A
    Environ Int; 2007 May; 33(4):583-8. PubMed ID: 17161460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.