BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22161326)

  • 1. Molecular systems biology of Sic1 in yeast cell cycle regulation through multiscale modeling.
    Barberis M
    Adv Exp Med Biol; 2012; 736():135-67. PubMed ID: 22161326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sic1 as a timer of Clb cyclin waves in the yeast cell cycle--design principle of not just an inhibitor.
    Barberis M
    FEBS J; 2012 Sep; 279(18):3386-410. PubMed ID: 22356687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast cyclin-dependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain.
    Barberis M; De Gioia L; Ruzzene M; Sarno S; Coccetti P; Fantucci P; Vanoni M; Alberghina L
    Biochem J; 2005 May; 387(Pt 3):639-47. PubMed ID: 15649124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIM-FRET approach.
    Schreiber G; Barberis M; Scolari S; Klaus C; Herrmann A; Klipp E
    FASEB J; 2012 Feb; 26(2):546-54. PubMed ID: 22002907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low number of SIC1 mRNA molecules ensures a low noise level in cell cycle progression of budding yeast.
    Barberis M; Beck C; Amoussouvi A; Schreiber G; Diener C; Herrmann A; Klipp E
    Mol Biosyst; 2011 Oct; 7(10):2804-12. PubMed ID: 21717009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CK2 regulates in vitro the activity of the yeast cyclin-dependent kinase inhibitor Sic1.
    Barberis M; Pagano MA; Gioia LD; Marin O; Vanoni M; Pinna LA; Alberghina L
    Biochem Biophys Res Commun; 2005 Nov; 336(4):1040-8. PubMed ID: 16168390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast IME2 functions early in meiosis upstream of cell cycle-regulated SBF and MBF targets.
    Brush GS; Najor NA; Dombkowski AA; Cukovic D; Sawarynski KE
    PLoS One; 2012; 7(2):e31575. PubMed ID: 22393365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation.
    Nishizawa M; Kawasumi M; Fujino M; Toh-e A
    Mol Biol Cell; 1998 Sep; 9(9):2393-405. PubMed ID: 9725902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the Sic1 inhibitor of B-type cyclins in Saccharomyces cerevisiae is not essential but contributes to cell cycle robustness.
    Cross FR; Schroeder L; Bean JM
    Genetics; 2007 Jul; 176(3):1541-55. PubMed ID: 17483408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor Sic1.
    Brocca S; Samalíková M; Uversky VN; Lotti M; Vanoni M; Alberghina L; Grandori R
    Proteins; 2009 Aug; 76(3):731-46. PubMed ID: 19280601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1.
    Escoté X; Zapater M; Clotet J; Posas F
    Nat Cell Biol; 2004 Oct; 6(10):997-1002. PubMed ID: 15448699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins.
    Barberis M; Linke C; Adrover MÀ; González-Novo A; Lehrach H; Krobitsch S; Posas F; Klipp E
    Biotechnol Adv; 2012; 30(1):108-30. PubMed ID: 21963604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent quantitative multicomponent control of the G₁-S network by the stress-activated protein kinase Hog1 upon osmostress.
    Adrover MÀ; Zi Z; Duch A; Schaber J; González-Novo A; Jimenez J; Nadal-Ribelles M; Clotet J; Klipp E; Posas F
    Sci Signal; 2011 Sep; 4(192):ra63. PubMed ID: 21954289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDK Pho85 targets CDK inhibitor Sic1 to relieve yeast G1 checkpoint arrest after DNA damage.
    Wysocki R; Javaheri A; Kristjansdottir K; Sha F; Kron SJ
    Nat Struct Mol Biol; 2006 Oct; 13(10):908-14. PubMed ID: 16964260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct activities of the related protein kinases Cdk1 and Ime2.
    Sawarynski KE; Kaplun A; Tzivion G; Brush GS
    Biochim Biophys Acta; 2007 Mar; 1773(3):450-6. PubMed ID: 17137646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation.
    Sedgwick C; Rawluk M; Decesare J; Raithatha S; Wohlschlegel J; Semchuk P; Ellison M; Yates J; Stuart D
    Biochem J; 2006 Oct; 399(1):151-60. PubMed ID: 16776651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New structural insights into phosphorylation-free mechanism for full cyclin-dependent kinase (CDK)-cyclin activity and substrate recognition.
    Zheng F; Quiocho FA
    J Biol Chem; 2013 Oct; 288(42):30682-30692. PubMed ID: 24022486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclin-dependent kinase inhibition: an opportunity to target protein-protein interactions.
    Klein MA
    Adv Protein Chem Struct Biol; 2020; 121():115-141. PubMed ID: 32312419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TORC1 controls G1-S cell cycle transition in yeast via Mpk1 and the greatwall kinase pathway.
    Moreno-Torres M; Jaquenoud M; De Virgilio C
    Nat Commun; 2015 Sep; 6():8256. PubMed ID: 26356805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1.
    Cocklin R; Heyen J; Larry T; Tyers M; Goebl M
    Genetics; 2011 Mar; 187(3):701-15. PubMed ID: 21196523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.