These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22161735)

  • 1. Toward understanding transverse relaxation in human brain through its field dependence.
    Mitsumori F; Watanabe H; Takaya N; Garwood M; Auerbach EJ; Michaeli S; Mangia S
    Magn Reson Med; 2012 Sep; 68(3):947-53. PubMed ID: 22161735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7T.
    Mitsumori F; Watanabe H; Takaya N
    Magn Reson Med; 2009 Nov; 62(5):1326-30. PubMed ID: 19780172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Value of transverse relaxometry difference methods for iron in human brain.
    Uddin MN; Lebel RM; Wilman AH
    Magn Reson Imaging; 2016 Jan; 34(1):51-9. PubMed ID: 26435459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo measurement of transverse relaxation time in the mouse brain at 17.6 T.
    Kara F; Chen F; Ronen I; de Groot HJ; Matysik J; Alia A
    Magn Reson Med; 2013 Oct; 70(4):985-93. PubMed ID: 23161407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotating frame relaxation during adiabatic pulses vs. conventional spin lock: simulations and experimental results at 4 T.
    Mangia S; Liimatainen T; Garwood M; Michaeli S
    Magn Reson Imaging; 2009 Oct; 27(8):1074-87. PubMed ID: 19559559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood oxygen level-dependent magnetic resonance imaging of the kidneys: influence of spatial resolution on the apparent R2* transverse relaxation rate of renal tissue.
    Rossi C; Sharma P; Pazahr S; Alkadhi H; Nanz D; Boss A
    Invest Radiol; 2013 Sep; 48(9):671-7. PubMed ID: 23571833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct quantitative comparison between cross-relaxation imaging and diffusion tensor imaging of the human brain at 3.0 T.
    Underhill HR; Yuan C; Yarnykh VL
    Neuroimage; 2009 Oct; 47(4):1568-78. PubMed ID: 19500678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility contrast in high field MRI of human brain as a function of tissue iron content.
    Yao B; Li TQ; Gelderen Pv; Shmueli K; de Zwart JA; Duyn JH
    Neuroimage; 2009 Feb; 44(4):1259-66. PubMed ID: 19027861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general linear relaxometry model of R1 using imaging data.
    Callaghan MF; Helms G; Lutti A; Mohammadi S; Weiskopf N
    Magn Reson Med; 2015 Mar; 73(3):1309-14. PubMed ID: 24700606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparent transverse relaxation rate in human brain varies linearly with tissue iron concentration at 4.7 T.
    Mitsumori F; Watanabe H; Takaya N; Garwood M
    Magn Reson Med; 2007 Nov; 58(5):1054-60. PubMed ID: 17969101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo assessment of age-related brain iron differences by magnetic field correlation imaging.
    Adisetiyo V; Jensen JH; Ramani A; Tabesh A; Di Martino A; Fieremans E; Castellanos FX; Helpern JA
    J Magn Reson Imaging; 2012 Aug; 36(2):322-31. PubMed ID: 22392846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse relaxometry with reduced echo train lengths via stimulated echo compensation.
    Uddin MN; Marc Lebel R; Wilman AH
    Magn Reson Med; 2013 Nov; 70(5):1340-6. PubMed ID: 23325543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid magnetic resonance quantification on the brain: Optimization for clinical usage.
    Warntjes JB; Leinhard OD; West J; Lundberg P
    Magn Reson Med; 2008 Aug; 60(2):320-9. PubMed ID: 18666127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative T(1rho) and adiabatic Carr-Purcell T2 magnetic resonance imaging of human occipital lobe at 4 T.
    Gröhn HI; Michaeli S; Garwood M; Kauppinen RA; Gröhn OH
    Magn Reson Med; 2005 Jul; 54(1):14-9. PubMed ID: 15968651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of stimulated echo correction to multicomponent T2 analysis.
    Prasloski T; Mädler B; Xiang QS; MacKay A; Jones C
    Magn Reson Med; 2012 Jun; 67(6):1803-14. PubMed ID: 22012743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of rapid acquisition with relaxation enhancement (RARE) pulse sequence parameters for ¹⁹F-MRI studies.
    Mastropietro A; De Bernardi E; Breschi GL; Zucca I; Cametti M; Soffientini CD; de Curtis M; Terraneo G; Metrangolo P; Spreafico R; Resnati G; Baselli G
    J Magn Reson Imaging; 2014 Jul; 40(1):162-70. PubMed ID: 25050436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-component T2 * analysis of bound and pore bone water fractions fails at high field strengths.
    Seifert AC; Wehrli SL; Wehrli FW
    NMR Biomed; 2015 Jul; 28(7):861-72. PubMed ID: 25981785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo study of the orientation-dependent and independent components of transverse relaxation rates in white matter.
    Gil R; Khabipova D; Zwiers M; Hilbert T; Kober T; Marques JP
    NMR Biomed; 2016 Dec; 29(12):1780-1790. PubMed ID: 27809376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transverse relaxometry with stimulated echo compensation.
    Lebel RM; Wilman AH
    Magn Reson Med; 2010 Oct; 64(4):1005-14. PubMed ID: 20564587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitations of skipping echoes for exponential T
    McPhee KC; Wilman AH
    J Magn Reson Imaging; 2018 Nov; 48(5):1432-1440. PubMed ID: 29687931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.