BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 22162436)

  • 1. Photocrosslinked co-networks from glycidylmethacrylated gelatin and poly(ethylene glycol) methacrylates.
    Pierce BF; Tronci G; Rössle M; Neffe AT; Jung F; Lendlein A
    Macromol Biosci; 2012 Apr; 12(4):484-93. PubMed ID: 22162436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG.
    Li G; Li P; Qiu H; Li D; Su M; Xu K
    J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolytic degradation behavior of poly(rac-lactide)-block-poly(propylene glycol)-block-poly(rac-lactide) dimethacrylate derived networks designed for biomedical applications.
    Wischke C; Tripodo G; Choi NY; Lendlein A
    Macromol Biosci; 2011 Dec; 11(12):1637-46. PubMed ID: 22012787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.
    Ding F; Hsu SH; Wu DH; Chiang WY
    J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel hydrogels as supports for in vitro cell growth: poly(ethylene glycol)- and gelatine-based (meth)acrylamidopeptide macromonomers.
    Zimmermann J; Bittner K; Stark B; Mülhaupt R
    Biomaterials; 2002 May; 23(10):2127-34. PubMed ID: 11962653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-covalent nano-adducts of co-poly(ester amide) and poly(ethylene glycol): preparation, characterization and model drug-release studies.
    Legashvili I; Nepharidze N; Katsarava R; Sannigrahi B; Khan IM
    J Biomater Sci Polym Ed; 2007; 18(6):673-85. PubMed ID: 17623550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels.
    Zhong C; Wu J; Reinhart-King CA; Chu CC
    Acta Biomater; 2010 Oct; 6(10):3908-18. PubMed ID: 20416406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a biostable replacement for PEGDA hydrogels.
    Browning MB; Cosgriff-Hernandez E
    Biomacromolecules; 2012 Mar; 13(3):779-86. PubMed ID: 22324325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and physicochemical analysis of interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate.
    Burmania JA; Martinez-Diaz GJ; Kao WJ
    J Biomed Mater Res A; 2003 Oct; 67(1):224-34. PubMed ID: 14517880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone.
    Wang K; Xu X; Wang Y; Yan X; Guo G; Huang M; Luo F; Zhao X; Wei Y; Qian Z
    Int J Pharm; 2010 Apr; 389(1-2):130-8. PubMed ID: 20096758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemoenzymatic synthesis of sugar-containing biocompatible hydrogels: crosslinked poly(beta-methylglucoside acrylate) and poly(beta-methylglucoside methacrylate).
    Park DW; Haam S; Lee TG; Kim HS; Kim WS
    J Biomed Mater Res A; 2004 Dec; 71(3):497-507. PubMed ID: 15386484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of biocompatible PEG-Based star polymers with cationic and degradable core for siRNA delivery.
    Cho HY; Srinivasan A; Hong J; Hsu E; Liu S; Shrivats A; Kwak D; Bohaty AK; Paik HJ; Hollinger JO; Matyjaszewski K
    Biomacromolecules; 2011 Oct; 12(10):3478-86. PubMed ID: 21894897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of poly(ethylene glycol) diacrylate concentration on network properties and in vivo response of poly(β-amino ester) networks.
    Safranski DL; Weiss D; Clark JB; Caspersen BS; Taylor WR; Gall K
    J Biomed Mater Res A; 2011 Feb; 96(2):320-9. PubMed ID: 21171151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile strategy for the modification of polyethylene substrates with non-fouling, bioactive poly(poly(ethylene glycol) methacrylate) brushes.
    Lavanant L; Pullin B; Hubbell JA; Klok HA
    Macromol Biosci; 2010 Jan; 10(1):101-8. PubMed ID: 19890949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization.
    Hiemstra C; Zhou W; Zhong Z; Wouters M; Feijen J
    J Am Chem Soc; 2007 Aug; 129(32):9918-26. PubMed ID: 17645336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering.
    Kim P; Yuan A; Nam KH; Jiao A; Kim DH
    Biofabrication; 2014 Jun; 6(2):024112. PubMed ID: 24717683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-up approach to build osteon-like structure by cell-laden photocrosslinkable hydrogel.
    Zuo Y; Xiao W; Chen X; Tang Y; Luo H; Fan H
    Chem Commun (Camb); 2012 Mar; 48(26):3170-2. PubMed ID: 22331209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance improvement of injectable poly(ethylene glycol) dimethacrylate-based hydrogels with finely dispersed hydroxyapatite.
    Zhou Z; Ren Y; Yang D; Nie J
    Biomed Mater; 2009 Jun; 4(3):035007. PubMed ID: 19448300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.