BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22162524)

  • 1. Training-induced adaptation in purine metabolism in high-level sprinters vs. triathletes.
    Zielinski J; Kusy K
    J Appl Physiol (1985); 2012 Feb; 112(4):542-51. PubMed ID: 22162524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of training load structure on purine metabolism in middle-distance runners.
    Zieliński J; Kusy K; Rychlewski T
    Med Sci Sports Exerc; 2011 Sep; 43(9):1798-807. PubMed ID: 21364483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purine metabolism in sprint- vs endurance-trained athletes aged 20‒90 years.
    Zieliński J; Slominska EM; Król-Zielińska M; Krasiński Z; Kusy K
    Sci Rep; 2019 Aug; 9(1):12075. PubMed ID: 31427706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxanthine as a predictor of performance in highly trained athletes.
    Zieliński J; Krasińska B; Kusy K
    Int J Sports Med; 2013 Dec; 34(12):1079-86. PubMed ID: 23670363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in purine metabolism in middle-aged elite, amateur, and recreational runners across a 1-year training cycle.
    Zieliński J; Kusy K; Słomińska E
    Eur J Appl Physiol; 2013 Mar; 113(3):763-73. PubMed ID: 22965897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of endurance training on changes in purine metabolism: a longitudinal study of competitive long-distance runners.
    Zieliński J; Rychlewski T; Kusy K; Domaszewska K; Laurentowska M
    Eur J Appl Physiol; 2009 Aug; 106(6):867-76. PubMed ID: 19479277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Blood Concentration of Adenosine Triphosphate Metabolism Biomarkers During Incremental Exercise in Highly Trained Athletes of Different Sport Specializations.
    Włodarczyk M; Kusy K; Słomińska E; Krasiński Z; Zieliński J
    J Strength Cond Res; 2019 May; 33(5):1192-1200. PubMed ID: 30908377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in Lactate, Ammonia, and Hypoxanthine Concentrations in a 1-Year Training Cycle in Highly Trained Athletes: Applying Biomarkers as Tools to Assess Training Status.
    Włodarczyk M; Kusy K; Słomińska E; Krasiński Z; Zieliński J
    J Strength Cond Res; 2020 Feb; 34(2):355-364. PubMed ID: 31469767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training-induced annual changes in red blood cell profile in highly-trained endurance and speed-power athletes.
    Ciekot-Sołtysiak M; Kusy K; Podgórski T; Zieliński J
    J Sports Med Phys Fitness; 2018 Dec; 58(12):1859-1866. PubMed ID: 29072032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects.
    Dudzinska W; Suska M; Lubkowska A; Jakubowska K; Olszewska M; Safranow K; Chlubek D
    J Physiol Sci; 2018 May; 68(3):293-305. PubMed ID: 28432611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma hypoxanthine and ammonia in humans during prolonged exercise.
    Sahlin K; Tonkonogi M; Söderlund K
    Eur J Appl Physiol Occup Physiol; 1999 Oct; 80(5):417-22. PubMed ID: 10502075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxanthine: A Universal Metabolic Indicator of Training Status in Competitive Sports.
    Zieliński J; Kusy K
    Exerc Sport Sci Rev; 2015 Oct; 43(4):214-21. PubMed ID: 26196868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Training on Erythrocyte Energy Status and Plasma Purine Metabolites in Athletes.
    Pospieszna B; Kusy K; Słomińska EM; Dudzinska W; Ciekot-Sołtysiak M; Zieliński J
    Metabolites; 2019 Dec; 10(1):. PubMed ID: 31861530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of high-intensity training on purine metabolism in man.
    Hellsten-Westing Y; Balsom PD; Norman B; Sjödin B
    Acta Physiol Scand; 1993 Dec; 149(4):405-12. PubMed ID: 8128888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice
    Moll K; Gussew A; Nisser M; Derlien S; Krämer M; Reichenbach JR
    NMR Biomed; 2018 Apr; 31(4):e3889. PubMed ID: 29393546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation potential in the dominant leg is lower, and [ADPfree] is higher in calf muscles at rest in endurance athletes than in sprinters and in untrained subjects.
    Zoladz JA; Kulinowski P; Zapart-Bukowska J; Grandys M; Majerczak J; Korzeniewski B; Jasiński A
    J Physiol Pharmacol; 2007 Dec; 58(4):803-19. PubMed ID: 18195489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress in half and full Ironman triathletes.
    Knez WL; Jenkins DG; Coombes JS
    Med Sci Sports Exerc; 2007 Feb; 39(2):283-8. PubMed ID: 17277592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sprint training reduces urinary purine loss following intense exercise in humans.
    Stathis CG; Carey MF; Hayes A; Garnham AP; Snow RJ
    Appl Physiol Nutr Metab; 2006 Dec; 31(6):702-8. PubMed ID: 17213884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gonadal hormone status in highly trained sprinters and in untrained men.
    Grandys M; Majerczak J; Zapart-Bukowska J; Kulpa J; Zoladz JA
    J Strength Cond Res; 2011 Apr; 25(4):1079-84. PubMed ID: 20703173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association between cigarette smoking and hypoxanthine guanine phosphoribosyltransferase activity.
    Chang SJ; Chen SM; Chiang SL; Chang KL; Ko YC
    Kaohsiung J Med Sci; 2005 Nov; 21(11):495-501. PubMed ID: 16358551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.