BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22162637)

  • 1. The IQ motif is crucial for Cav1.1 function.
    Stroffekova K
    J Biomed Biotechnol; 2011; 2011():504649. PubMed ID: 22162637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III-IV loop on skeletal muscle EC coupling.
    Weiss RG; O'Connell KM; Flucher BE; Allen PD; Grabner M; Dirksen RT
    Am J Physiol Cell Physiol; 2004 Oct; 287(4):C1094-102. PubMed ID: 15201141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STAC proteins associate to the IQ domain of Ca
    Campiglio M; Costé de Bagneaux P; Ortner NJ; Tuluc P; Van Petegem F; Flucher BE
    Proc Natl Acad Sci U S A; 2018 Feb; 115(6):1376-1381. PubMed ID: 29363593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ release through ryanodine receptors regulates skeletal muscle L-type Ca2+ channel expression.
    Avila G; O'Connell KM; Groom LA; Dirksen RT
    J Biol Chem; 2001 May; 276(21):17732-8. PubMed ID: 11278546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A malignant hyperthermia-inducing mutation in RYR1 (R163C): consequent alterations in the functional properties of DHPR channels.
    Bannister RA; Estève E; Eltit JM; Pessah IN; Allen PD; López JR; Beam KG
    J Gen Physiol; 2010 Jun; 135(6):629-40. PubMed ID: 20479108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-dependent excitation-contraction coupling triggered by the heterologous cardiac/brain DHPR beta2a-subunit in skeletal myotubes.
    Sheridan DC; Carbonneau L; Ahern CA; Nataraj P; Coronado R
    Biophys J; 2003 Dec; 85(6):3739-57. PubMed ID: 14645065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutation of the calmodulin binding motif IQ of the L-type Ca(v)1.2 Ca2+ channel to EQ induces dilated cardiomyopathy and death.
    Blaich A; Pahlavan S; Tian Q; Oberhofer M; Poomvanicha M; Lenhardt P; Domes K; Wegener JW; Moosmang S; Ruppenthal S; Scholz A; Lipp P; Hofmann F
    J Biol Chem; 2012 Jun; 287(27):22616-25. PubMed ID: 22589547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+/CaM-dependent inactivation of the skeletal muscle L-type Ca2+ channel (Cav1.1).
    Stroffekova K
    Pflugers Arch; 2008 Feb; 455(5):873-84. PubMed ID: 17899167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle.
    Bannister RA; Beam KG
    J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Determinant for the CaVbeta2 subunit modulation of the CaV1.2 calcium channel.
    Lao QZ; Kobrinsky E; Harry JB; Ravindran A; Soldatov NM
    J Biol Chem; 2008 Jun; 283(23):15577-88. PubMed ID: 18411278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ release in muscle fibers expressing R4892W and G4896V type 1 ryanodine receptor disease mutants.
    Lefebvre R; Legrand C; Groom L; Dirksen RT; Jacquemond V
    PLoS One; 2013; 8(1):e54042. PubMed ID: 23308296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ current and charge movements in skeletal myotubes promoted by the beta-subunit of the dihydropyridine receptor in the absence of ryanodine receptor type 1.
    Ahern CA; Sheridan DC; Cheng W; Mortenson L; Nataraj P; Allen P; De Waard M; Coronado R
    Biophys J; 2003 Feb; 84(2 Pt 1):942-59. PubMed ID: 12547776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures.
    Tanaka H; Furuya T; Kameda N; Kobayashi T; Mizusawa H
    J Muscle Res Cell Motil; 2000; 21(6):507-26. PubMed ID: 11206130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthograde dihydropyridine receptor signal regulates ryanodine receptor passive leak.
    Eltit JM; Li H; Ward CW; Molinski T; Pessah IN; Allen PD; Lopez JR
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):7046-51. PubMed ID: 21482776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the Bi-directional coupling with the ryanodine receptor.
    Grabner M; Dirksen RT; Suda N; Beam KG
    J Biol Chem; 1999 Jul; 274(31):21913-9. PubMed ID: 10419512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and pharmacological modulation of the embryonic skeletal muscle calcium channel splice variant CaV1.1e.
    Benedetti B; Tuluc P; Mastrolia V; Dlaska C; Flucher BE
    Biophys J; 2015 Mar; 108(5):1072-80. PubMed ID: 25762319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional interaction of CaV channel isoforms with ryanodine receptors studied in dysgenic myotubes.
    Schuhmeier RP; Gouadon E; Ursu D; Kasielke N; Flucher BE; Grabner M; Melzer W
    Biophys J; 2005 Mar; 88(3):1765-77. PubMed ID: 15626717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence differences in the IQ motifs of CaV1.1 and CaV1.2 strongly impact calmodulin binding and calcium-dependent inactivation.
    Ohrtman J; Ritter B; Polster A; Beam KG; Papadopoulos S
    J Biol Chem; 2008 Oct; 283(43):29301-11. PubMed ID: 18718913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts.
    Woo JS; Cho CH; Kim DH; Lee EH
    Exp Mol Med; 2010 Sep; 42(9):614-27. PubMed ID: 20644344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational activation of Ca2+ entry by depolarization of skeletal myotubes.
    Cherednichenko G; Hurne AM; Fessenden JD; Lee EH; Allen PD; Beam KG; Pessah IN
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15793-8. PubMed ID: 15505226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.