These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22162975)

  • 61. Mechanically Robust Dual-Crosslinking Elastomer Enabled by a Facile Self-Crosslinking Approach.
    Huang Z; Jin B; Wu H; Zeng Z; Huang M; Wu J; Liao L; Zheng J
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683281
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes.
    Xu B; Li Y; Fang X; Thouas GA; Cook WD; Newgreen DF; Chen Q
    J Mech Behav Biomed Mater; 2013 Dec; 28():354-65. PubMed ID: 24125905
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Stretchable Conductors Fabricated by Stencil Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal.
    Sun YC; Boero G; Brugger J
    ACS Appl Electron Mater; 2021 Dec; 3(12):5423-5432. PubMed ID: 34977587
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Novel elastomeric fibrous networks produced from poly(xylitol sebacate)2:5 by core/shell electrospinning: fabrication and mechanical properties.
    Li Y; Thouas GA; Chen Q
    J Mech Behav Biomed Mater; 2014 Dec; 40():210-221. PubMed ID: 25243671
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Developing chemoselective and biodegradable polyester elastomers for bioscaffold application.
    Barrett DG; Luo W; Yousaf MN
    J Mater Chem B; 2015 Feb; 3(7):1405-1414. PubMed ID: 32264491
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Citrate chemistry and biology for biomaterials design.
    Ma C; Gerhard E; Lu D; Yang J
    Biomaterials; 2018 Sep; 178():383-400. PubMed ID: 29759730
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tailoring the physicochemical and shape memory properties of the biodegradable polymer poly(glycerol dodecanoate) via curing conditions.
    Solorio LD; Bocks ML; Hollister SJ
    J Biomed Mater Res A; 2017 Jun; 105(6):1618-1623. PubMed ID: 27935209
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biodegradable elastomers for tissue engineering and cell-biomaterial interactions.
    Bettinger CJ
    Macromol Biosci; 2011 Apr; 11(4):467-82. PubMed ID: 21229578
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Highly adjustable biomaterial networks from three-armed biodegradable macromers.
    Loth R; Loth T; Schwabe K; Bernhardt R; Schulz-Siegmund M; Hacker MC
    Acta Biomater; 2015 Oct; 26():82-96. PubMed ID: 26277378
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dopamine-Incorporated Dual Bioactive Electroactive Shape Memory Polyurethane Elastomers with Physiological Shape Recovery Temperature, High Stretchability, and Enhanced C2C12 Myogenic Differentiation.
    Zhao X; Dong R; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29595-29611. PubMed ID: 28812353
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Elastomeric PGS scaffolds in arterial tissue engineering.
    Lee KW; Wang Y
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21505410
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biodegradable crosslinked polyesters derived from thiomalic acid and
    Yapor JP; Neufeld BH; Tapia JB; Reynolds MM
    J Mater Chem B; 2018 Jun; 6(24):4071-4081. PubMed ID: 31372219
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Development of aliphatic biodegradable photoluminescent polymers.
    Yang J; Zhang Y; Gautam S; Liu L; Dey J; Chen W; Mason RP; Serrano CA; Schug KA; Tang L
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10086-91. PubMed ID: 19506254
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds.
    Bat E; Kothman BH; Higuera GA; van Blitterswijk CA; Feijen J; Grijpma DW
    Biomaterials; 2010 Nov; 31(33):8696-705. PubMed ID: 20739060
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Lipase-Catalyzed Poly(glycerol-1,8-octanediol-sebacate): Biomaterial Engineering by Combining Compositional and Crosslinking Variables.
    Lang K; Quichocho HB; Black SP; Bramson MTK; Linhardt RJ; Corr DT; Gross RA
    Biomacromolecules; 2022 May; 23(5):2150-2159. PubMed ID: 35468284
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers.
    Wang J; Bettinger CJ; Langer RS; Borenstein JT
    Organogenesis; 2010; 6(4):212-6. PubMed ID: 21220957
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fast photocurable thiol-ene elastomers with tunable biodegradability, mechanical and surface properties enhance myoblast differentiation and contractile function.
    Mohamed MA; Shahini A; Rajabian N; Caserto J; El-Sokkary AMA; Akl MA; Andreadis ST; Cheng C
    Bioact Mater; 2021 Jul; 6(7):2120-2133. PubMed ID: 33511311
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis and characterization of a photo-cross-linked biodegradable elastomer.
    Amsden BG; Misra G; Gu F; Younes HM
    Biomacromolecules; 2004; 5(6):2479-86. PubMed ID: 15530066
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biodegradable Elastomers with Antioxidant and Retinoid-like Properties.
    van Lith R; Wang X; Ameer G
    ACS Biomater Sci Eng; 2016 Feb; 2(2):268-277. PubMed ID: 27347559
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A tough biodegradable elastomer.
    Wang Y; Ameer GA; Sheppard BJ; Langer R
    Nat Biotechnol; 2002 Jun; 20(6):602-6. PubMed ID: 12042865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.