These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22162975)

  • 81. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering.
    Thomas LV; Nair PD
    Biomatter; 2011; 1(1):81-90. PubMed ID: 23507730
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Synthesis and Characterization of Plug-and-Play Polyurethane Urea Elastomers as Biodegradable Matrixes for Tissue Engineering Applications.
    Kishan AP; Wilems T; Mohiuddin S; Cosgriff-Hernandez EM
    ACS Biomater Sci Eng; 2017 Dec; 3(12):3493-3502. PubMed ID: 33445385
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers.
    Wang Z; Ma Y; Wang Y; Liu Y; Chen K; Wu Z; Yu S; Yuan Y; Liu C
    Acta Biomater; 2018 Apr; 71():279-292. PubMed ID: 29549052
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering.
    Hidalgo-Bastida LA; Barry JJ; Everitt NM; Rose FR; Buttery LD; Hall IP; Claycomb WC; Shakesheff KM
    Acta Biomater; 2007 Jul; 3(4):457-62. PubMed ID: 17321810
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering.
    Natarajan J; Movva S; Madras G; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():534-547. PubMed ID: 28532063
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A Rheological Study of Biodegradable Injectable PEGMC/HA Composite Scaffolds.
    Jiao Y; Gyawali D; Stark JM; Akcora P; Nair P; Tran RT; Yang J
    Soft Matter; 2012; 8(5):1499-1507. PubMed ID: 25309615
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Gradient platform for combinatorial screening of thermoset polymers for biomedical applications.
    Dasgupta Q; Madras G; Chatterjee K
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():766-777. PubMed ID: 30423763
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning.
    Sonseca A; Sahay R; Stepien K; Bukala J; Wcislek A; McClain A; Sobolewski P; Sui X; Puskas JE; Kohn J; Wagner HD; El Fray M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110505. PubMed ID: 31923996
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications.
    Hung KC; Tseng CS; Hsu SH
    Adv Healthc Mater; 2014 Oct; 3(10):1578-87. PubMed ID: 24729580
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering.
    Da L; Gong M; Chen A; Zhang Y; Huang Y; Guo Z; Li S; Li-Ling J; Zhang L; Xie H
    Acta Biomater; 2017 Sep; 59():45-57. PubMed ID: 28528117
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
    Hong Y; Guan J; Fujimoto KL; Hashizume R; Pelinescu AL; Wagner WR
    Biomaterials; 2010 May; 31(15):4249-58. PubMed ID: 20188411
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Tough Ordered Mesoporous Elastomeric Biomaterials Formed at Ambient Conditions.
    Rajasekharan AK; Gyllensten C; Blomstrand E; Liebi M; Andersson M
    ACS Nano; 2020 Jan; 14(1):241-254. PubMed ID: 31846286
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Photo-crosslinked fabrication of novel biocompatible and elastomeric star-shaped inositol-based polymer with highly tunable mechanical behavior and degradation.
    Xie M; Ge J; Xue Y; Du Y; Lei B; Ma PX
    J Mech Behav Biomed Mater; 2015 Nov; 51():163-8. PubMed ID: 26253207
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release.
    Guan J; Stankus JJ; Wagner WR
    J Control Release; 2007 Jul; 120(1-2):70-8. PubMed ID: 17509717
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery.
    Gyawali D; Nair P; Zhang Y; Tran RT; Zhang C; Samchukov M; Makarov M; Kim HK; Yang J
    Biomaterials; 2010 Dec; 31(34):9092-105. PubMed ID: 20800893
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Osteoblast biocompatibility on poly(octanediol citrate)/sebacate elastomers with controlled wettability.
    Djordjevic I; Szili EJ; Choudhury NR; Dutta N; Steele DA; Kumar S
    J Biomater Sci Polym Ed; 2010; 21(8-9):1039-50. PubMed ID: 20507707
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.
    Barrioni BR; de Carvalho SM; Oréfice RL; de Oliveira AA; Pereira Mde M
    Mater Sci Eng C Mater Biol Appl; 2015; 52():22-30. PubMed ID: 25953536
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues.
    Montgomery M; Ahadian S; Davenport Huyer L; Lo Rito M; Civitarese RA; Vanderlaan RD; Wu J; Reis LA; Momen A; Akbari S; Pahnke A; Li RK; Caldarone CA; Radisic M
    Nat Mater; 2017 Oct; 16(10):1038-1046. PubMed ID: 28805824
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis.
    Zhang B; Montgomery M; Chamberlain MD; Ogawa S; Korolj A; Pahnke A; Wells LA; Massé S; Kim J; Reis L; Momen A; Nunes SS; Wheeler AR; Nanthakumar K; Keller G; Sefton MV; Radisic M
    Nat Mater; 2016 Jun; 15(6):669-78. PubMed ID: 26950595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.