These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 22163022)
1. Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. Dinparast Djadid N; Jazayeri H; Raz A; Favia G; Ricci I; Zakeri S PLoS One; 2011; 6(12):e28484. PubMed ID: 22163022 [TBL] [Abstract][Full Text] [Related]
2. Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: steps toward applying paratransgenic tools against malaria. Rami A; Raz A; Zakeri S; Dinparast Djadid N Parasit Vectors; 2018 Jun; 11(1):367. PubMed ID: 29950179 [TBL] [Abstract][Full Text] [Related]
3. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. Rani A; Sharma A; Rajagopal R; Adak T; Bhatnagar RK BMC Microbiol; 2009 May; 9():96. PubMed ID: 19450290 [TBL] [Abstract][Full Text] [Related]
5. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. Chavshin AR; Oshaghi MA; Vatandoost H; Pourmand MR; Raeisi A; Enayati AA; Mardani N; Ghoorchian S Acta Trop; 2012 Feb; 121(2):129-34. PubMed ID: 22074685 [TBL] [Abstract][Full Text] [Related]
6. 16S rRNA gene-based identification of Elizabethkingia meningoseptica (Flavobacteriales: Flavobacteriaceae) as a dominant midgut bacterium of the Asian malaria vector Anopheles stephensi (Dipteria: Culicidae) with antimicrobial activities. Ngwa CJ; Glöckner V; Abdelmohsen UR; Scheuermayer M; Fischer R; Hentschel U; Pradel G J Med Entomol; 2013 Mar; 50(2):404-14. PubMed ID: 23540130 [TBL] [Abstract][Full Text] [Related]
7. Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach. Chavshin AR; Oshaghi MA; Vatandoost H; Pourmand MR; Raeisi A; Terenius O Parasit Vectors; 2014 Sep; 7():419. PubMed ID: 25189316 [TBL] [Abstract][Full Text] [Related]
8. Diversity of Culturable Bacteria Isolated From the Feces of Wild Anopheles darlingi (Diptera: Culicidae) Mosquitoes From the Brazilian Amazon. Arruda A; Ferreira GEM; Santos Júnior A; Matos NB; Carvalho TS; Ozaki LS; Stabeli RG; Silva AAE J Med Entomol; 2021 Jul; 58(4):1900-1907. PubMed ID: 33704463 [TBL] [Abstract][Full Text] [Related]
9. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Carter TE; Yared S; Gebresilassie A; Bonnell V; Damodaran L; Lopez K; Ibrahim M; Mohammed S; Janies D Acta Trop; 2018 Dec; 188():180-186. PubMed ID: 30189199 [TBL] [Abstract][Full Text] [Related]
10. [The midgut bacterial flora in lab-reared Anopheles sinensis]. Li M; Tang LH Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2010 Apr; 28(2):143-7. PubMed ID: 20666322 [TBL] [Abstract][Full Text] [Related]
11. Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Patil CD; Patil SV; Salunke BK; Salunkhe RB Parasitol Res; 2012 May; 110(5):1841-7. PubMed ID: 22065062 [TBL] [Abstract][Full Text] [Related]
12. 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes. Terenius O; de Oliveira CD; Pinheiro WD; Tadei WP; James AA; Marinotti O J Med Entomol; 2008 Jan; 45(1):172-5. PubMed ID: 18283961 [TBL] [Abstract][Full Text] [Related]
13. Wolbachia 16S rRNA haplotypes detected in wild Anopheles stephensi in eastern Ethiopia. Waymire E; Duddu S; Yared S; Getachew D; Dengela D; Bordenstein SR; Balkew M; Zohdy S; Irish SR; Carter TE Parasit Vectors; 2022 May; 15(1):178. PubMed ID: 35610655 [TBL] [Abstract][Full Text] [Related]
14. Isolation and identification of microflora from the midgut and salivary glands of Anopheles species in malaria endemic areas of Ethiopia. Berhanu A; Abera A; Nega D; Mekasha S; Fentaw S; Assefa A; Gebrewolde G; Wuletaw Y; Assefa A; Dugassa S; Tekie H; Tasew G BMC Microbiol; 2019 Apr; 19(1):85. PubMed ID: 31035931 [TBL] [Abstract][Full Text] [Related]
15. Molecular Characterization of Culturable Aerobic Bacteria in the Midgut of Field-Caught Gunathilaka N; Ranasinghe K; Amarasinghe D; Rodrigo W; Mallawarachchi H; Chandrasena N Biomed Res Int; 2020; 2020():8732473. PubMed ID: 33083488 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis of rDNA-ITS2 and RAPD loci in field populations of the malaria vector, Anopheles stephensi (Diptera: Culicidae): implications for the control program in Iran. Djadid ND; Gholizadeh S; Aghajari M; Zehi AH; Raeisi A; Zakeri S Acta Trop; 2006 Jan; 97(1):65-74. PubMed ID: 16188214 [TBL] [Abstract][Full Text] [Related]
17. PCR identification of five species from the Anopheles maculipennis complex (Diptera: Culicidae) in North-Eastern Romania. Ivanescu ML; Acatrinei D; Pavel I; Sulesco T; Miron L Acta Parasitol; 2015 Jun; 60(2):283-9. PubMed ID: 26203997 [TBL] [Abstract][Full Text] [Related]
18. Characterization of midgut microbiome of Pereira MH; Mohanty AK; Garg S; Tyagi S; Kumar A J Vector Borne Dis; 2021; 58(1):74-84. PubMed ID: 34818867 [TBL] [Abstract][Full Text] [Related]
19. Bacterial communities associated with the midgut microbiota of wild Anopheles gambiae complex in Burkina Faso. Zoure AA; Sare AR; Yameogo F; Somda Z; Massart S; Badolo A; Francis F Mol Biol Rep; 2020 Jan; 47(1):211-224. PubMed ID: 31643044 [TBL] [Abstract][Full Text] [Related]
20. Genetic characterization of the Anopheles maculipennis complex (Diptera: Culicidae) in Morocco: a fundamental tool for malaria control. Trari B; Dakki M East Mediterr Health J; 2018 Mar; 23(12):809-814. PubMed ID: 29528090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]