BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

719 related articles for article (PubMed ID: 22163160)

  • 1. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering.
    Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z
    Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of polylactide/poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hybrid fibers for potential application in bone tissue engineering.
    Wang Y; Guo G; Chen H; Gao X; Fan R; Zhang D; Zhou L
    Int J Nanomedicine; 2014; 9():1991-2003. PubMed ID: 24790439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun polylactide/poly(ethylene glycol) hybrid fibrous scaffolds for tissue engineering.
    Wang BY; Fu SZ; Ni PY; Peng JR; Zheng L; Luo F; Liu H; Qian ZY
    J Biomed Mater Res A; 2012 Feb; 100(2):441-9. PubMed ID: 22105865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering.
    Zhang C; Salick MR; Cordie TM; Ellingham T; Dan Y; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():463-471. PubMed ID: 25686973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoblast differentiation of mesenchymal stem cells on modified PES-PEG electrospun fibrous composites loaded with Zn
    Amiri B; Ghollasi M; Shahrousvand M; Kamali M; Salimi A
    Differentiation; 2016; 92(4):148-158. PubMed ID: 27575952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering.
    Lins LC; Wianny F; Livi S; Hidalgo IA; Dehay C; Duchet-Rumeau J; Gérard JF
    Biomacromolecules; 2016 Oct; 17(10):3172-3187. PubMed ID: 27629596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering.
    Gandhimathi C; Quek YJ; Ezhilarasu H; Ramakrishna S; Bay BH; Srinivasan DK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31623264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds.
    Kim J; Hefferan TE; Yaszemski MJ; Lu L
    Tissue Eng Part A; 2009 Aug; 15(8):2299-307. PubMed ID: 19292677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic differentiation of human mesenchymal stem cells on poly(ethylene glycol)-variant biomaterials.
    Briggs T; Treiser MD; Holmes PF; Kohn J; Moghe PV; Arinzeh TL
    J Biomed Mater Res A; 2009 Dec; 91(4):975-84. PubMed ID: 19097152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression.
    Allo BA; Lin S; Mequanint K; Rizkalla AS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7574-83. PubMed ID: 23826710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.
    Kutikov AB; Skelly JD; Ayers DC; Song J
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4890-901. PubMed ID: 25695310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.
    Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.
    Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells.
    Zhong S; He X; Li Y; Lou X
    Tissue Eng Regen Med; 2019 Apr; 16(2):141-150. PubMed ID: 30989041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells.
    Kutikov AB; Song J
    Acta Biomater; 2013 Sep; 9(9):8354-64. PubMed ID: 23791675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.
    Bhaskar B; Owen R; Bahmaee H; Wally Z; Sreenivasa Rao P; Reilly GC
    J Biomed Mater Res A; 2018 May; 106(5):1334-1340. PubMed ID: 29316238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.