BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 22163542)

  • 1. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review.
    Fong DT; Chan YY
    Sensors (Basel); 2010; 10(12):11556-65. PubMed ID: 22163542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.
    Picerno P
    Gait Posture; 2017 Jan; 51():239-246. PubMed ID: 27833057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial sensor-based methods in walking speed estimation: a systematic review.
    Yang S; Li Q
    Sensors (Basel); 2012; 12(5):6102-16. PubMed ID: 22778632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable inertial sensors in swimming motion analysis: a systematic review.
    de Magalhaes FA; Vannozzi G; Gatta G; Fantozzi S
    J Sports Sci; 2015; 33(7):732-45. PubMed ID: 25356682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Step Size and Lower Limb Segment Orientation from Multiple Low-Cost Wearable Inertial/Magnetic Sensors for Pedestrian Navigation.
    Tjhai C; O'Keefe K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Wearable Sensors in Human Movement Analysis in Non-Swimming Aquatic Activities: A Systematic Review.
    Marinho DA; Neiva HP; Morais JE
    Int J Environ Res Public Health; 2019 Dec; 16(24):. PubMed ID: 31842306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive Estimation of Joint Moments with Inertial Sensor System for Analysis of STS Rehabilitation Training.
    Liu K; Yan J; Liu Y; Ye M
    J Healthc Eng; 2018; 2018():6570617. PubMed ID: 29610656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation and visualization of sagittal kinematics of lower limbs orientation using body-fixed sensors.
    Dejnabadi H; Jolles BM; Casanova E; Fua P; Aminian K
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1385-93. PubMed ID: 16830942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors--A validity study.
    Ertzgaard P; Ă–hberg F; Gerdle B; Grip H
    Man Ther; 2016 Feb; 21():241-9. PubMed ID: 26456185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable systems for shoulder kinematics assessment: a systematic review.
    Carnevale A; Longo UG; Schena E; Massaroni C; Lo Presti D; Berton A; Candela V; Denaro V
    BMC Musculoskelet Disord; 2019 Nov; 20(1):546. PubMed ID: 31731893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of using inertial sensors to assess human movement.
    Saber-Sheikh K; Bryant EC; Glazzard C; Hamel A; Lee RY
    Man Ther; 2010 Feb; 15(1):122-5. PubMed ID: 19632882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of Upper Limb Range of Motion Using Wearable Sensors: A Systematic Review.
    Walmsley CP; Williams SA; Grisbrook T; Elliott C; Imms C; Campbell A
    Sports Med Open; 2018 Nov; 4(1):53. PubMed ID: 30499058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on band-pass filtering for calculating foot displacements from accelerometer and gyroscope sensors.
    Charry E; Lai DT; Begg RK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4824, 4826-7. PubMed ID: 19963857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of unrestrained human gait on change in walking velocity.
    Makino Y; Tsujiuchi N; Ito A; Koizumi T; Nakamura S; Matsuda Y; Tsuchiya Y; Hayashi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2521-4. PubMed ID: 25570503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drift-free position estimation of periodic or quasi-periodic motion using inertial sensors.
    Latt WT; Veluvolu KC; Ang WT
    Sensors (Basel); 2011; 11(6):5931-51. PubMed ID: 22163935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A trial of making reference gait data for simple gait evaluation system with wireless inertial sensors.
    Karasawa Y; Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3427-30. PubMed ID: 24110465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.