These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 22163556)

  • 1. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.
    Lee CY; Fan WY; Hsieh WJ
    Sensors (Basel); 2010; 10(7):6395-405. PubMed ID: 22163556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.
    Lee CY; Fan WY; Chang CP
    Sensors (Basel); 2011; 11(2):1418-32. PubMed ID: 22319361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of multi-functional flexible micro-sensors for in situ measurement of temperature, voltage and fuel flow in a proton exchange membrane fuel cell.
    Lee CY; Chan PC; Lee CJ
    Sensors (Basel); 2010; 10(12):11605-17. PubMed ID: 22163545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time remote monitoring of temperature and humidity within a proton exchange membrane fuel cell using flexible sensors.
    Kuo LS; Huang HH; Yang CH; Chen PH
    Sensors (Basel); 2011; 11(9):8674-84. PubMed ID: 22164099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.
    Lee CY; Weng FB; Kuo YW; Tsai CH; Cheng YT; Cheng CK; Lin JT
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Flexible Four-In-One Microsensor to Internal Real-Time Monitoring of Proton Exchange Membrane Fuel Cell.
    Lee CY; Chen CH; Chiu CY; Yu KL; Yang LJ
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.
    Li J; Wang Z; Li J; Pan M; Tang H
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1181-93. PubMed ID: 24749421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.
    Zamora H; Plaza J; Cañizares P; Lobato J; Rodrigo MA
    ChemSusChem; 2016 May; 9(10):1187-93. PubMed ID: 27076055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local area water removal analysis of a proton exchange membrane fuel cell under gas purge conditions.
    Lee CY; Lee YM; Lee SJ
    Sensors (Basel); 2012; 12(1):768-83. PubMed ID: 22368495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Five-in-One Microsensor for Real-Time Wireless Microscopic Diagnosis inside Electric Motorcycle Fuel Cell Stack Range Extender.
    Lee CY; Chen CH; Lee TJ; Cheong JS; Liu YC; Chen YC
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33494440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible 6-in-1 Microsensor for Real-Time Microscopic Monitoring of Proton Battery.
    Lee CY; Chen CH; Yang CY; Cheong JS; Chien YH; Lin YC
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.
    Lee CY; Lee SJ; Tang MS; Chen PC
    Sensors (Basel); 2011; 11(10):9942-50. PubMed ID: 22163735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real time monitoring of temperature of a micro proton exchange membrane fuel cell.
    Lee CY; Lee SJ; Hu YC; Shih WP; Fan WY; Chuang CW
    Sensors (Basel); 2009; 9(3):1423-32. PubMed ID: 22573963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.
    Nawn G; Pace G; Lavina S; Vezzù K; Negro E; Bertasi F; Polizzi S; Di Noto V
    ChemSusChem; 2015 Apr; 8(8):1381-93. PubMed ID: 25801848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells.
    Chen Y; Bellini M; Bevilacqua M; Fornasiero P; Lavacchi A; Miller HA; Wang L; Vizza F
    ChemSusChem; 2015 Feb; 8(3):524-33. PubMed ID: 25504942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte.
    Li J; Li X; Zhao Y; Lu W; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):896-900. PubMed ID: 22529063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an Internal Real-Time Wireless Diagnostic Tool for a Proton Exchange Membrane Fuel Cell.
    Lee CY; Chen CH; Tsai CH; Wang YS
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Monitoring of HT-PEMFC.
    Lee CY; Weng FB; Yang CY; Chiu CW; Nawale SM
    Membranes (Basel); 2022 Jan; 12(1):. PubMed ID: 35054620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a flexible micro CO sensor for micro reformer applications.
    Lee CY; Chang CC; Lo YM
    Sensors (Basel); 2010; 10(12):10701-13. PubMed ID: 22163494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling Up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules.
    Marappan M; Narayanan R; Manoharan K; Vijayakrishnan MK; Palaniswamy K; Karazhanov S; Sundaram S
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33430043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.