These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22163574)

  • 1. "Smart" continuous glucose monitoring sensors: on-line signal processing issues.
    Sparacino G; Facchinetti A; Cobelli C
    Sensors (Basel); 2010; 10(7):6751-72. PubMed ID: 22163574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Glucose Monitoring Sensors: Past, Present and Future Algorithmic Challenges.
    Facchinetti A
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal processing algorithms implementing the "smart sensor" concept to improve continuous glucose monitoring in diabetes.
    Facchinetti A; Sparacino G; Cobelli C
    J Diabetes Sci Technol; 2013 Sep; 7(5):1308-18. PubMed ID: 24124959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calibration of Minimally Invasive Continuous Glucose Monitoring Sensors: State-of-The-Art and Current Perspectives.
    Acciaroli G; Vettoretti M; Facchinetti A; Sparacino G
    Biosensors (Basel); 2018 Mar; 8(1):. PubMed ID: 29534053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an Error Model for a Factory-Calibrated Continuous Glucose Monitoring Sensor with 10-Day Lifetime.
    Vettoretti M; Battocchio C; Sparacino G; Facchinetti A
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An online failure detection method of the glucose sensor-insulin pump system: improved overnight safety of type-1 diabetic subjects.
    Facchinetti A; Del Favero S; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2013 Feb; 60(2):406-16. PubMed ID: 23193300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous Glucose Monitoring Sensors for Diabetes Management: A Review of Technologies and Applications.
    Cappon G; Vettoretti M; Sparacino G; Facchinetti A
    Diabetes Metab J; 2019 Aug; 43(4):383-397. PubMed ID: 31441246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time improvement of continuous glucose monitoring accuracy: the smart sensor concept.
    Facchinetti A; Sparacino G; Guerra S; Luijf YM; DeVries JH; Mader JK; Ellmerer M; Benesch C; Heinemann L; Bruttomesso D; Avogaro A; Cobelli C;
    Diabetes Care; 2013 Apr; 36(4):793-800. PubMed ID: 23172973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices.
    Facchinetti A; Del Favero S; Sparacino G; Cobelli C
    Med Biol Eng Comput; 2015 Dec; 53(12):1259-69. PubMed ID: 25416850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies.
    Facchinetti A; Sparacino G; Cobelli C
    J Diabetes Sci Technol; 2010 Jan; 4(1):4-14. PubMed ID: 20167162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Accuracy of Continuous Glucose Monitoring Systems in Pediatric Patients with Diabetes Mellitus: Results from Two Studies.
    Laffel L
    Diabetes Technol Ther; 2016 Feb; 18 Suppl 2(Suppl 2):S223-33. PubMed ID: 26784126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing by deconvolution plasma glucose from continuous glucose monitoring sensor data.
    Facchinetti A; Sparacino G; Zanderigo F; Cobelli C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():55-8. PubMed ID: 17946377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous glucose monitoring time series and hypo/hyperglycemia prevention: requirements, methods, open problems.
    Sparacino G; Facchinetti A; Maran A; Cobelli C
    Curr Diabetes Rev; 2008 Aug; 4(3):181-92. PubMed ID: 18690899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Personalized Week-to-Week Updating Algorithm to Improve Continuous Glucose Monitoring Performance.
    Zavitsanou S; Lee JB; Pinsker JE; Church MM; Doyle FJ; Dassau E
    J Diabetes Sci Technol; 2017 Nov; 11(6):1070-1079. PubMed ID: 29032732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of a Factory-Calibrated, Real-Time Continuous Glucose Monitoring System During 10 Days of Use in Youth and Adults with Diabetes.
    Wadwa RP; Laffel LM; Shah VN; Garg SK
    Diabetes Technol Ther; 2018 Jun; 20(6):395-402. PubMed ID: 29901421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods of evaluating the utility of continuous glucose monitor alerts.
    Kamath A; Mahalingam A; Brauker J
    J Diabetes Sci Technol; 2010 Jan; 4(1):57-66. PubMed ID: 20167168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the error of factory-calibrated continuous glucose monitoring sensors: application to Dexcom G6 sensor data.
    Vettoretti M; Favero SD; Sparacino G; Facchinetti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():750-753. PubMed ID: 31946005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoregressive Modeling of Drift and Random Error to Characterize a Continuous Intravascular Glucose Monitoring Sensor.
    Zhou T; Dickson JL; Geoffrey Chase J
    J Diabetes Sci Technol; 2018 Jan; 12(1):90-104. PubMed ID: 28707484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate-of-Change Dependence of the Performance of Two CGM Systems During Induced Glucose Swings.
    Pleus S; Schoemaker M; Morgenstern K; Schmelzeisen-Redeker G; Haug C; Link M; Zschornack E; Freckmann G
    J Diabetes Sci Technol; 2015 Jul; 9(4):801-7. PubMed ID: 25852074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-walled carbon nanotube-based near-infrared optical glucose sensors toward in vivo continuous glucose monitoring.
    Yum K; McNicholas TP; Mu B; Strano MS
    J Diabetes Sci Technol; 2013 Jan; 7(1):72-87. PubMed ID: 23439162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.