These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22163586)

  • 21. Tin oxide-carbon nanotube composite for NOx sensing.
    Jang DM; Jung H; Hoa ND; Kim D; Hong SK; Kim H
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1425-8. PubMed ID: 22629971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Au/SnO-SnO
    Zou HY; Li LX; Huang Y; Tang Y; Wu JP; Xiao ZL; Zeng JL; Yu D; Cao Z
    Anal Methods; 2023 Mar; 15(10):1315-1322. PubMed ID: 36802289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. H(2) sensing characteristics of SnO(2) coated single wall carbon nanotube network sensors.
    Yang M; Kim DH; Kim WS; Kang TJ; Lee BY; Hong S; Kim YH; Hong SH
    Nanotechnology; 2010 May; 21(21):215501. PubMed ID: 20431207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile Au catalyst loading on the inner shell of hollow SnO2 spheres using Au-decorated block copolymer sphere templates and their selective H2S sensing characteristics.
    Choi SJ; Kim MP; Lee SJ; Kim BJ; Kim ID
    Nanoscale; 2014 Oct; 6(20):11898-903. PubMed ID: 25175492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification of coral-like SnO2 nanostructures with dense TiO2 nanoparticles for a self-cleaning gas sensor.
    Wan Y; Liu J; Fu X; Zhang X; Meng F; Yu X; Jin Z; Kong L; Liu J
    Talanta; 2012 Sep; 99():394-403. PubMed ID: 22967570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective oxidation of CO in the presence of air over gold-based catalysts Au/TiO2/C (sonochemistry) and Au/TiO2/C (microwave).
    George PP; Gedanken A; Perkas N; Zhong Z
    Ultrason Sonochem; 2008 Apr; 15(4):539-547. PubMed ID: 17659993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Study of the CO Sensing Responses of Cu-, Pt- and Pd-Activated SnO₂ Sensors: Effect of Precipitation Agents, Dopants and Doping Methods.
    Tangirala VKK; Gómez-Pozos H; Rodríguez-Lugo V; Olvera ML
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28467372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor.
    Huang D; Hu T; Chen N; Zhang W; Di J
    Anal Chim Acta; 2014 May; 825():51-6. PubMed ID: 24767150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glow discharge growth of SnO2 nano-needles from SnH4.
    Wang CF; Xie SY; Lin SC; Cheng X; Zhang XH; Huang RB; Zheng LS
    Chem Commun (Camb); 2004 Aug; (15):1766-7. PubMed ID: 15278176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Sensitive and Selective Hydrogen Gas Sensor Using the Mesoporous SnO₂ Modified Layers.
    Xue N; Zhang Q; Zhang S; Zong P; Yang F
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29036898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of mesoporous tin oxide and its application as a LNG sensor.
    Kim NH; Kim GJ
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3914-6. PubMed ID: 18047087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures.
    Mathur S; Barth S
    Small; 2007 Dec; 3(12):2070-5. PubMed ID: 18033716
    [No Abstract]   [Full Text] [Related]  

  • 33. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors.
    Renard L; Babot O; Saadaoui H; Fuess H; Brötz J; Gurlo A; Arveux E; Klein A; Toupance T
    Nanoscale; 2012 Nov; 4(21):6806-13. PubMed ID: 23011110
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and characterization of SnO2/ZnO gas sensors for detecting toluene gas.
    Min BS; Park YH; Lee CS
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8495-501. PubMed ID: 25958552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid-State Method Synthesis of SnO₂-Decorated g-C₃N₄ Nanocomposites with Enhanced Gas-Sensing Property to Ethanol.
    Cao J; Qin C; Wang Y; Zhang H; Sun G; Zhang Z
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772960
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-centrosymmetric Au-SnO2 hybrid nanostructures with strong localization of plasmonic for enhanced photocatalysis application.
    Wu W; Liao L; Zhang S; Zhou J; Xiao X; Ren F; Sun L; Dai Z; Jiang C
    Nanoscale; 2013 Jun; 5(12):5628-36. PubMed ID: 23685533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled fabrication of SnO(2) arrays of well-aligned nanotubes and nanowires.
    Shi L; Xu Y; Li Q
    Nanoscale; 2010 Oct; 2(10):2104-8. PubMed ID: 20689879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection.
    Li Z; Zhao Q; Fan W; Zhan J
    Nanoscale; 2011 Apr; 3(4):1646-52. PubMed ID: 21279215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Meat quality assessment using Au patch electrode Ag-SnO
    Senapati M; Sahu PP
    Food Chem; 2020 Sep; 324():126893. PubMed ID: 32344336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced gas sensing by assembling Pd nanoparticles onto the surface of SnO2 nanowires.
    Li H; Xu J; Zhu Y; Chen X; Xiang Q
    Talanta; 2010 Jul; 82(2):458-63. PubMed ID: 20602920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.