BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22163589)

  • 1. Two-channel hyperspectral LiDAR with a supercontinuum laser source.
    Chen Y; Räikkönen E; Kaasalainen S; Suomalainen J; Hakala T; Hyyppä J; Chen R
    Sensors (Basel); 2010; 10(7):7057-66. PubMed ID: 22163589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical system design for a hyperspectral imaging lidar using supercontinuum laser and its preliminary performance.
    Qian L; Wu D; Zhou X; Zhong L; Wei W; Wang Y; Shi S; Song S; Gong W; Liu D
    Opt Express; 2021 May; 29(11):17542-17553. PubMed ID: 34154295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prototype development and evaluation of a hyperspectral lidar optical receiving system.
    Qian L; Wu D; Liu D; Shi S; Song S; Gong W
    Opt Express; 2024 Mar; 32(7):10786-10800. PubMed ID: 38570944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mid-infrared cascaded stimulated Raman scattering and flat supercontinuum generation in an As-S optical fiber pump at 2 µm.
    Wang F; Zhou X; Zhang X; Yan X; Li S; Suzuki T; Ohishi Y; Cheng T
    Appl Opt; 2021 Aug; 60(22):6351-6356. PubMed ID: 34612868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research Progress of Supercontinuum Laser Spectroscopy in Biomedical Field].
    Wan X; Liu PX; Zhang TT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):338-45. PubMed ID: 30264958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supercontinuum-based hyperspectral LiDAR for precision laser scanning.
    Ray P; Salido-Monzú D; Camenzind SL; Wieser A
    Opt Express; 2023 Sep; 31(20):33486-33499. PubMed ID: 37859130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All normal dispersion nonlinear fibre supercontinuum source characterization and application in hyperspectral stimulated Raman scattering microscopy.
    Abdolghader P; Pegoraro AF; Joly NY; Ridsdale A; Lausten R; Légaré F; Stolow A
    Opt Express; 2020 Nov; 28(24):35997-36008. PubMed ID: 33379704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tree classification with fused mobile laser scanning and hyperspectral data.
    Puttonen E; Jaakkola A; Litkey P; Hyyppä J
    Sensors (Basel); 2011; 11(5):5158-82. PubMed ID: 22163894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light.
    Liu YZ; Renteria C; Courtney CD; Ibrahim B; You S; Chaney EJ; Barkalifa R; Iyer RR; Zurauskas M; Tu H; Llano DA; Christian-Hinman CA; Boppart SA
    Neurophotonics; 2020 Oct; 7(4):045007. PubMed ID: 33163545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long distance active hyperspectral sensing using high-power near-infrared supercontinuum light source.
    Manninen A; Kääriäinen T; Parviainen T; Buchter S; Heiliö M; Laurila T
    Opt Express; 2014 Mar; 22(6):7172-7. PubMed ID: 24664065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of Hyperspectral Single Photon Lidar for Robust Autonomous Vehicle Perception.
    Taher J; Hakala T; Jaakkola A; Hyyti H; Kukko A; Manninen P; Maanpää J; Hyyppä J
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-high-speed phase-sensitive optical coherence reflectometer with a stretched pulse supercontinuum source.
    Song H; Cho SB; Kim DU; Jeong S; Kim DY
    Appl Opt; 2011 Jul; 50(21):4000-4. PubMed ID: 21772383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full waveform hyperspectral LiDAR for terrestrial laser scanning.
    Hakala T; Suomalainen J; Kaasalainen S; Chen Y
    Opt Express; 2012 Mar; 20(7):7119-27. PubMed ID: 22453394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source.
    Billeh YN; Liu M; Buma T
    Opt Express; 2010 Aug; 18(18):18519-24. PubMed ID: 20940743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter.
    Chen Y; Li W; Hyyppä J; Wang N; Jiang C; Meng F; Tang L; Puttonen E; Li C
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation.
    Liu Y; Zhao Y; Lyngsø J; You S; Wilson WL; Tu H; Boppart SA
    J Lightwave Technol; 2015 May; 33(9):1814-1820. PubMed ID: 26166939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercontinuum in integrated photonics: generation, applications, challenges, and perspectives.
    Brès CS; Della Torre A; Grassani D; Brasch V; Grillet C; Monat C
    Nanophotonics; 2023 Apr; 12(7):1199-1244. PubMed ID: 36969949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source.
    Lee C; Han S; Kim S; Jeon M; Jeon MY; Kim C; Kim J
    Appl Opt; 2013 Mar; 52(9):1824-8. PubMed ID: 23518723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region.
    Dasa MK; Markos C; Maria M; Petersen CR; Moselund PM; Bang O
    Biomed Opt Express; 2018 Apr; 9(4):1762-1770. PubMed ID: 29675317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease.
    Seddon AB; Napier B; Lindsay I; Lamrini S; Moselund PM; Stone N; Bang O; Farries M
    Analyst; 2018 Dec; 143(24):5874-5887. PubMed ID: 30475355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.