These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22163655)

  • 1. Modeling and experimental study on characterization of micromachined thermal gas inertial sensors.
    Zhu R; Ding H; Su Y; Yang Y
    Sensors (Basel); 2010; 10(9):8304-15. PubMed ID: 22163655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromachined Fluid Inertial Sensors.
    Liu S; Zhu R
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28216569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micromachined hot-wire thermal conductivity probe for biomedical applications.
    Yi M; Panchawagh HV; Podhajsky RJ; Mahajan RL
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2477-84. PubMed ID: 19403359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit.
    Liu SQ; Zhu R
    Sensors (Basel); 2016 Jan; 16(2):175. PubMed ID: 26840314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A z-axis quartz cross-fork micromachined gyroscope based on shear stress detection.
    Xie L; Wu X; Li S; Wang H; Su J; Dong P
    Sensors (Basel); 2010; 10(3):1573-88. PubMed ID: 22294887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of temperature characteristics of micromachined suspended coplanar waveguides for biosensing applications.
    Li L; Liu Z
    Sensors (Basel); 2011; 11(3):2640-51. PubMed ID: 22163759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.
    Li C; Wu PM; Hartings JA; Wu Z; Cheyuo C; Wang P; LeDoux D; Shutter LA; Ramaswamy BR; Ahn CH; Narayan RK
    Biomed Microdevices; 2012 Aug; 14(4):759-68. PubMed ID: 22552801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Micro-Preconcentrator Combined Olfactory Sensing System with a Micromechanical Cantilever Sensor for Detecting 2,4-Dinitrotoluene Gas Vapor.
    Chae MS; Kim J; Yoo YK; Kang JY; Lee JH; Hwang KS
    Sensors (Basel); 2015 Jul; 15(8):18167-77. PubMed ID: 26213944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical sensing with a polymer-based micromachined Fabry-Perot sensor.
    Zhang T; Talla S; Gong Z; Karandikar S; Giorno R; Que L
    Opt Express; 2010 Aug; 18(17):18394-400. PubMed ID: 20721233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer.
    Hayat T; Anwar MS; Farooq M; Alsaedi A
    PLoS One; 2015; 10(3):e0118815. PubMed ID: 25775032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capacitive Based Micromachined Resonators for Low Level Mass Detection.
    Nathani MU; Nazemi H; Love C; Babu Lopez Y; Swaminathan S; Emadi A
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and Numerical Study of a Thermal Expansion Gyroscope for Different Gases.
    Kock G; Combette P; Tedjini M; Schneider M; Gauthier-Blum C; Giani A
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.
    Shin M; Krause JS; DeBitetto P; White RD
    J Acoust Soc Am; 2013 Aug; 134(2):1011-20. PubMed ID: 23927100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromachined Thermal Gas Sensors-A Review.
    Gardner ELW; Gardner JW; Udrea F
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of advanced modeling techniques to optimize thermal packaging designs.
    Formato RM; Potami R; Ahmed I
    PDA J Pharm Sci Technol; 2010; 64(6):545-61. PubMed ID: 21502065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Model and Countermeasures for Future Smart Glasses.
    Matsuhashi K; Kanamoto T; Kurokawa A
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat dissipation from suspended self-heated nanowires: gas sensor prospective.
    Zhang J; Strelcov E; Kolmakov A
    Nanotechnology; 2013 Nov; 24(44):444009. PubMed ID: 24113219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing movement: microsensors for body motion measurement.
    Zeng H; Zhao Y
    Sensors (Basel); 2011; 11(1):638-60. PubMed ID: 22346595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.