These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22163656)

  • 1. FPGA-based fused smart sensor for real-time plant-transpiration dynamic estimation.
    Millan-Almaraz JR; de Jesus Romero-Troncoso R; Guevara-Gonzalez RG; Contreras-Medina LM; Carrillo-Serrano RV; Osornio-Rios RA; Duarte-Galvan C; Rios-Alcaraz MA; Torres-Pacheco I
    Sensors (Basel); 2010; 10(9):8316-31. PubMed ID: 22163656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermography to explore plant-environment interactions.
    Costa JM; Grant OM; Chaves MM
    J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaf structural and hydraulic adjustment with respect to air humidity and canopy position in silver birch (Betula pendula).
    Sellin A; Taneda H; Alber M
    J Plant Res; 2019 May; 132(3):369-381. PubMed ID: 30989500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smaller stomata require less severe leaf drying to close: a case study in Rosa hydrida.
    Giday H; Kjaer KH; Fanourakis D; Ottosen CO
    J Plant Physiol; 2013 Oct; 170(15):1309-16. PubMed ID: 23726470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf Hydraulic Architecture and Stomatal Conductance: A Functional Perspective.
    Rockwell FE; Holbrook NM
    Plant Physiol; 2017 Aug; 174(4):1996-2007. PubMed ID: 28615346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal crypts have small effects on transpiration: a numerical model analysis.
    Roth-Nebelsick A; Hassiotou F; Veneklaas EJ
    Plant Physiol; 2009 Dec; 151(4):2018-27. PubMed ID: 19864375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations.
    Eamus D; Taylor DT; Macinnis-Ng CM; Shanahan S; De Silva L
    Plant Cell Environ; 2008 Mar; 31(3):269-77. PubMed ID: 18088329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.
    Maes WH; Steppe K
    J Exp Bot; 2012 Aug; 63(13):4671-712. PubMed ID: 22922637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorometric Measurement of Individual Stomata Activity and Transpiration via a "Brush-on", Water-Responsive Polymer.
    Seo M; Park DH; Lee CW; Jaworski J; Kim JM
    Sci Rep; 2016 Aug; 6():32394. PubMed ID: 27578430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of gravity on transpiration of plant leaves.
    Hirai H; Kitaya Y
    Ann N Y Acad Sci; 2009 Apr; 1161():166-72. PubMed ID: 19426314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of thermodiffusion in transpiration.
    Griffani DS; Rognon P; Farquhar GD
    New Phytol; 2024 Aug; 243(4):1301-1311. PubMed ID: 38453691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The poorly-explored stomatal response to temperature at constant evaporative demand.
    Mills C; Bartlett MK; Buckley TN
    Plant Cell Environ; 2024 Sep; 47(9):3428-3446. PubMed ID: 38602407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Coordination effect between vapor water loss through plant stomata and liquid water supply in soil-plant-atmosphere continuum (SPAC): a review].
    Liu LM; Qi H; Luo XL; Zhang X
    Ying Yong Sheng Tai Xue Bao; 2008 Sep; 19(9):2067-73. PubMed ID: 19102325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avoiding high relative air humidity during critical stages of leaf ontogeny is decisive for stomatal functioning.
    Fanourakis D; Carvalho SM; Almeida DP; Heuvelink E
    Physiol Plant; 2011 Jul; 142(3):274-86. PubMed ID: 21457269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery from water stress affects grape leaf petiole transcriptome.
    Perrone I; Pagliarani C; Lovisolo C; Chitarra W; Roman F; Schubert A
    Planta; 2012 Jun; 235(6):1383-96. PubMed ID: 22241135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum.
    Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA
    PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of transpiration by radiation.
    Pieruschka R; Huber G; Berry JA
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13372-7. PubMed ID: 20624981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.