These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22163689)

  • 1. Kalman-filter-based orientation determination using inertial/magnetic sensors: observability analysis and performance evaluation.
    Sabatini AM
    Sensors (Basel); 2011; 11(10):9182-206. PubMed ID: 22163689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable-State-Dimension Kalman-based Filter for orientation determination using inertial and magnetic sensors.
    Sabatini AM
    Sensors (Basel); 2012; 12(7):8491-506. PubMed ID: 23012502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing.
    Sabatini AM
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1346-56. PubMed ID: 16830938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observability analysis of a matrix Kalman filter-based navigation system using visual/inertial/magnetic sensors.
    Feng G; Wu W; Wang J
    Sensors (Basel); 2012; 12(7):8877-94. PubMed ID: 23012523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking.
    Yi C; Ma J; Guo H; Han J; Gao H; Jiang F; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended Kalman filter-based methods for pose estimation using visual, inertial and magnetic sensors: comparative analysis and performance evaluation.
    Ligorio G; Sabatini AM
    Sensors (Basel); 2013 Feb; 13(2):1919-41. PubMed ID: 23385409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Magnetic Disturbance Influences the Attitude and Heading in Magnetic and Inertial Sensor-Based Orientation Estimation.
    Fan B; Li Q; Liu T
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing.
    Sabatini AM
    Sensors (Basel); 2011; 11(2):1489-525. PubMed ID: 22319365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Quaternion-Based Kalman Filter for Human Body Motion Tracking Using the Second Estimator of the Optimal Quaternion Algorithm and the Joint Angle Constraint Method with Inertial and Magnetic Sensors.
    Duan Y; Zhang X; Li Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Observability of an Inertial System by Rotary Motions of an IMU.
    Du S; Sun W; Gao Y
    Sensors (Basel); 2017 Mar; 17(4):. PubMed ID: 28350344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.
    Edwan E; Knedlik S; Loffeld O
    Sensors (Basel); 2012; 12(5):5310-27. PubMed ID: 22778586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Full-State Robust Extended Kalman Filter for Orientation Tracking During Long-Duration Dynamic Tasks Using Magnetic and Inertial Measurement Units.
    Nazarahari M; Rouhani H
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1280-1289. PubMed ID: 34181546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.
    Sabatini AM; Genovese V
    Sensors (Basel); 2014 Jul; 14(8):13324-47. PubMed ID: 25061835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 9-DOF IMU-Based Attitude and Heading Estimation Using an Extended Kalman Filter with Bias Consideration.
    Farahan SB; Machado JJM; de Almeida FG; Tavares JMRS
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of IMU and MARG orientation using a gradient descent algorithm.
    Madgwick SO; Harrison AJ; Vaidyanathan A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975346. PubMed ID: 22275550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body sensor network-based strapdown orientation estimation: application to human locomotion.
    Misgeld BJ; Rüschen D; Kim S; Leonhardt S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650480. PubMed ID: 24187297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Attitude and Heading Accuracy with Double Quaternion Parameters Estimation and Magnetic Disturbance Rejection.
    Wondosen A; Jeong JS; Kim SK; Debele Y; Kang BS
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.
    Szczęsna A; Pruszowski P
    Springerplus; 2016; 5(1):1965. PubMed ID: 27933243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fast Gauss-Newton optimizer for estimating human body orientation.
    Lee JK; Park EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1679-82. PubMed ID: 19163001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.