These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays. Wegner KD; Lanh PT; Jennings T; Oh E; Jain V; Fairclough SM; Smith JM; Giovanelli E; Lequeux N; Pons T; Hildebrandt N ACS Appl Mater Interfaces; 2013 Apr; 5(8):2881-92. PubMed ID: 23496235 [TBL] [Abstract][Full Text] [Related]
7. Nanobodies and nanocrystals: highly sensitive quantum dot-based homogeneous FRET immunoassay for serum-based EGFR detection. Wegner KD; Lindén S; Jin Z; Jennings TL; el Khoulati R; van Bergen en Henegouwen PM; Hildebrandt N Small; 2014 Feb; 10(4):734-40. PubMed ID: 24115738 [TBL] [Abstract][Full Text] [Related]
8. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. Hallaj T; Amjadi M; Qiu X; Susumu K; Medintz IL; Hildebrandt N Nanoscale; 2020 Jul; 12(25):13719-13730. PubMed ID: 32573632 [TBL] [Abstract][Full Text] [Related]
9. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots. Geißler D; Hildebrandt N Anal Bioanal Chem; 2016 Jul; 408(17):4475-83. PubMed ID: 26970745 [TBL] [Abstract][Full Text] [Related]
10. Time-resolved analysis of a highly sensitive Förster resonance energy transfer immunoassay using terbium complexes as donors and quantum dots as acceptors. Hildebrandt N; Charbonnière LJ; Löhmannsröben HG J Biomed Biotechnol; 2007; 2007(7):79169. PubMed ID: 18273412 [TBL] [Abstract][Full Text] [Related]
11. Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer. Qiu X; Hildebrandt N ACS Nano; 2015 Aug; 9(8):8449-57. PubMed ID: 26192765 [TBL] [Abstract][Full Text] [Related]
12. Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture. Boeneman K; Deschamps JR; Buckhout-White S; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Stewart MH; Susumu K; Goldman ER; Ancona M; Medintz IL ACS Nano; 2010 Dec; 4(12):7253-66. PubMed ID: 21082822 [TBL] [Abstract][Full Text] [Related]
13. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay. Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345 [TBL] [Abstract][Full Text] [Related]
17. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity Enhancement of Förster Resonance Energy Transfer Immunoassays by Multiple Antibody Conjugation on Quantum Dots. Annio G; Jennings TL; Tagit O; Hildebrandt N Bioconjug Chem; 2018 Jun; 29(6):2082-2089. PubMed ID: 29791131 [TBL] [Abstract][Full Text] [Related]
19. Multiplexed Biosensing and Bioimaging Using Lanthanide-Based Time-Gated Förster Resonance Energy Transfer. Qiu X; Xu J; Cardoso Dos Santos M; Hildebrandt N Acc Chem Res; 2022 Feb; 55(4):551-564. PubMed ID: 35084817 [TBL] [Abstract][Full Text] [Related]