These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 22163748)

  • 41. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor.
    Ravelo Arias SI; Ramírez Muñoz D; Cardoso S; Ferreira R; Freitas P
    Rev Sci Instrum; 2015 Jun; 86(6):066109. PubMed ID: 26133884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal drift reduction with multiple bias current for MOSFET dosimeters.
    Carvajal MA; Martínez-Olmos A; Morales DP; Lopez-Villanueva JA; Lallena AM; Palma AJ
    Phys Med Biol; 2011 Jun; 56(12):3535-50. PubMed ID: 21606552
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Signal conditioning for differential temperature measurement with thermistors using a generalized impedance converter.
    Castro Montero E; Ramírez Muñoz D; Sánchez Moreno J; Fong Barrio J; Salazar Mustelier A
    Rev Sci Instrum; 2007 Aug; 78(8):086114. PubMed ID: 17764374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measurement system for temperature dependent noise characterization of magnetoresistive sensors.
    Nording F; Weber S; Ludwig F; Schilling M
    Rev Sci Instrum; 2017 Mar; 88(3):035006. PubMed ID: 28372431
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Real-Time Thermal Self-Elimination Method for Static Mode Operated Freestanding Piezoresistive Microcantilever-Based Biosensors.
    Ku YF; Huang LS; Yen YK
    Biosensors (Basel); 2018 Feb; 8(1):. PubMed ID: 29495574
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature dependence of the giant magnetoresistance in Fe/DNA/Fe structure.
    Ketabi SA; Bahoosh SG; Shahtahmasebi N
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8943-6. PubMed ID: 22400284
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the importance of sensor height variation for detection of magnetic labels by magnetoresistive sensors.
    Henriksen AD; Wang SX; Hansen MF
    Sci Rep; 2015 Jul; 5():12282. PubMed ID: 26195089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors.
    Lee JR; Sato N; Bechstein DJ; Osterfeld SJ; Wang J; Gani AW; Hall DA; Wang SX
    Sci Rep; 2016 Jan; 6():18692. PubMed ID: 26728870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Architecture of an Electrical Equivalence Pyranometer with Temperature Difference Analog Control.
    Dantas ECS; Segundo JTD; Catunda SYC; Belfort DR; Freire RCS; Silva Júnior PFD
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Wireless Passive LC Resonant Sensor Based on LTCC under High-Temperature/Pressure Environments.
    Qin L; Shen D; Wei T; Tan Q; Luo T; Zhou Z; Xiong J
    Sensors (Basel); 2015 Jul; 15(7):16729-39. PubMed ID: 26184207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Machine Learning and Swarm Optimization Algorithm in Temperature Compensation of Pressure Sensors.
    Wang H; Li J
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366005
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter.
    Matko V; Milanović M
    Sensors (Basel); 2016 Jun; 16(7):. PubMed ID: 27367688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hybrid graphene-manganite thin film structure for magnetoresistive sensor application.
    Lukose R; Zurauskiene N; Balevicius S; Stankevic V; Keršulis S; Plausinaitiene V; Navickas R
    Nanotechnology; 2019 Aug; 30(35):355503. PubMed ID: 31067515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A primary field compensation scheme for planar array magnetic induction tomography.
    Watson S; Morris A; Williams RJ; Griffiths H; Gough W
    Physiol Meas; 2004 Feb; 25(1):271-9. PubMed ID: 15005321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bead magnetorelaxometry with an on-chip magnetoresistive sensor.
    Dalslet BT; Damsgaard CD; Donolato M; Strømme M; Strömberg M; Svedlindh P; Hansen MF
    Lab Chip; 2011 Jan; 11(2):296-302. PubMed ID: 20978654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Estimation of biological tissue conductivity with contact-free magnetic impedance measurements].
    Cordes A; Steffen M; Leonhardt S
    Biomed Tech (Berl); 2010 Apr; 55(2):89-99. PubMed ID: 20367326
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micro-Fabricated RTD Based Sensor for Breathing Analysis and Monitoring.
    Neji B; Ferko N; Ghandour R; Karar AS; Arbess H
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33466505
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules.
    Song JW; Lee JS; An JE; Park CG
    Rev Sci Instrum; 2015 Jun; 86(6):065003. PubMed ID: 26133864
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of very large values of magnetoresistance in a graphene nanoribbon device.
    Kim WY; Kim KS
    Nat Nanotechnol; 2008 Jul; 3(7):408-12. PubMed ID: 18654564
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications.
    Chlenova AA; Moiseev AA; Derevyanko MS; Semirov AV; Lepalovsky VN; Kurlyandskaya GV
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28817084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.