BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 22163761)

  • 1. A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering.
    Holthoff EL; Stratis-Cullum DN; Hankus ME
    Sensors (Basel); 2011; 11(3):2700-14. PubMed ID: 22163761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Writing droplets of molecularly imprinted polymers by nano fountain pen and detecting their molecular interactions by surface-enhanced Raman scattering.
    Kantarovich K; Tsarfati I; Gheber LA; Haupt K; Bar I
    Anal Chem; 2009 Jul; 81(14):5686-90. PubMed ID: 19601651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors.
    Guo X; Li J; Arabi M; Wang X; Wang Y; Chen L
    ACS Sens; 2020 Mar; 5(3):601-619. PubMed ID: 32072805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.
    Kamra T; Zhou T; Montelius L; Schnadt J; Ye L
    Anal Chem; 2015; 87(10):5056-61. PubMed ID: 25897989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy.
    Liu M; Chen W
    Biosens Bioelectron; 2013 Aug; 46():68-73. PubMed ID: 23500479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica.
    Kong X; Xi Y; Le Duff P; Chong X; Li E; Ren F; Rorrer GL; Wang AX
    Biosens Bioelectron; 2017 Feb; 88():63-70. PubMed ID: 27471144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples.
    Alizadeh T; Zare M; Ganjali MR; Norouzi P; Tavana B
    Biosens Bioelectron; 2010 Jan; 25(5):1166-72. PubMed ID: 19892541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen.
    Carneiro MCCG; Sousa-Castillo A; Correa-Duarte MA; Sales MGF
    Biosens Bioelectron; 2019 Dec; 146():111761. PubMed ID: 31614254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.
    Hu Y; Lu X
    J Food Sci; 2016 May; 81(5):N1272-80. PubMed ID: 27061315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecularly Imprinted Polymers Coupled with Surface-Enhanced Raman Spectroscopy to Detect Chemical Hazards in Foods.
    Hua MZ; Feng S; Lu X
    Methods Mol Biol; 2021; 2359():131-139. PubMed ID: 34410665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoconjugation of Molecularly Imprinted Polymer Nanoparticles for Surface-Enhanced Raman Detection of Propranolol.
    Kamra T; Xu C; Montelius L; Schnadt J; Wijesundera SA; Yan M; Ye L
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27479-85. PubMed ID: 26595262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecularly imprinted polymers (MIP) combined with Raman spectroscopy for selective detection of Δ⁹-tetrahydrocannabinol (THC).
    Yeganegi A; Fardindoost S; Tasnim N; Hoorfar M
    Talanta; 2024 Jan; 267():125271. PubMed ID: 37806109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polydopamine-based molecularly imprinted thin films for electro-chemical sensing of nitro-explosives in aqueous solutions.
    Leibl N; Duma L; Gonzato C; Haupt K
    Bioelectrochemistry; 2020 Oct; 135():107541. PubMed ID: 32388439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trace analysis of food by surface-enhanced Raman spectroscopy combined with molecular imprinting technology: Principle, application, challenges, and prospects.
    Neng J; Wang J; Wang Y; Zhang Y; Chen P
    Food Chem; 2023 Dec; 429():136883. PubMed ID: 37506657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection.
    Castro-Grijalba A; Montes-García V; Cordero-Ferradás MJ; Coronado E; Pérez-Juste J; Pastoriza-Santos I
    ACS Sens; 2020 Mar; 5(3):693-702. PubMed ID: 32134254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT.
    Xu S; Lu H
    Biosens Bioelectron; 2016 Nov; 85():950-956. PubMed ID: 27315521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for the carcinoembryonic antigen.
    Feng J; Li X; Cheng H; Huang W; Kong H; Li Y; Li L
    Mikrochim Acta; 2019 Nov; 186(12):774. PubMed ID: 31728646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated portable Raman sensor with nanofabricated gold bowtie array substrates for energetics detection.
    Hatab NA; Rouleau CM; Retterer ST; Eres G; Hatzinger PB; Gu B
    Analyst; 2011 Apr; 136(8):1697-702. PubMed ID: 21373687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO-Ag hybrids for ultrasensitive detection of trinitrotoluene by surface-enhanced Raman spectroscopy.
    He X; Wang H; Li Z; Chen D; Zhang Q
    Phys Chem Chem Phys; 2014 Jul; 16(28):14706-12. PubMed ID: 24920315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Ag-molecularly imprinted polymer composite for efficient surface-enhanced Raman scattering activities under a low-energy laser.
    Chen S; Li X; Guo Y; Qi J
    Analyst; 2015 May; 140(9):3239-43. PubMed ID: 25773587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.