These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22163795)

  • 1. Potentiometric electronic tongue to resolve mixtures of sulfide and perchlorate anions.
    Wilson D; Abbas MN; Radwan AL; del Valle M
    Sensors (Basel); 2011; 11(3):3214-26. PubMed ID: 22163795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiometric electronic tongues for foodstuff and biosample recognition--an overview.
    Ciosek P; Wróblewski W
    Sensors (Basel); 2011; 11(5):4688-701. PubMed ID: 22163870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination.
    Cortina M; Duran A; Alegret S; del Valle M
    Anal Bioanal Chem; 2006 Aug; 385(7):1186-94. PubMed ID: 16799771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanostar: C-H Hydrogen Bonding Neutral Carrier Scaffold for Anion-Selective Sensors.
    Zahran EM; Fatila EM; Chen CH; Flood AH; Bachas LG
    Anal Chem; 2018 Feb; 90(3):1925-1933. PubMed ID: 29356501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potentiometric behavior of polymer-supported metallophthalocyanines used as anion-selective electrodes.
    Arvand M; Pourhabib A; Shemshadi R; Giahi M
    Anal Bioanal Chem; 2007 Feb; 387(3):1033-9. PubMed ID: 17180336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated electronic tongue based on potentiometric sensors for the determination of a trinary anionic surfactant mixture.
    Cortina M; Ecker C; Calvo D; del Valle M
    J Pharm Biomed Anal; 2008 Jan; 46(2):213-8. PubMed ID: 17964750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous and automated monitoring of the multimetal biosorption processes by potentiometric sensor array and artificial neural network.
    Wilson D; del Valle M; Alegret S; Valderrama C; Florido A
    Talanta; 2013 Sep; 114():17-24. PubMed ID: 23953435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benzodipyrrole derivates as new ionophores for anion-selective electrodes: improving potentiometric selectivity towards divalent anions.
    Cuartero M; Ortuño JA; García MS; Sánchez G; Más-Montoya M; Curiel D
    Talanta; 2011 Sep; 85(4):1876-81. PubMed ID: 21872032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity enhancement of anion-responsive electrodes by pulsed chronopotentiometry.
    Gemene KL; Shvarev A; Bakker E
    Anal Chim Acta; 2007 Jan; 583(1):190-6. PubMed ID: 17386545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels.
    Mueller AV; Hemond HF
    Talanta; 2013 Dec; 117():112-8. PubMed ID: 24209318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysprosium selective potentiometric membrane sensor.
    Zamani HA; Faridbod F; Ganjali MR
    Mater Sci Eng C Mater Biol Appl; 2013 Mar; 33(2):608-12. PubMed ID: 25427463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiometric sensors based on fluorous membranes doped with highly selective ionophores for carbonate.
    Chen LD; Mandal D; Pozzi G; Gladysz JA; Bühlmann P
    J Am Chem Soc; 2011 Dec; 133(51):20869-77. PubMed ID: 22070518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring of beer fermentation based on hybrid electronic tongue.
    Kutyła-Olesiuk A; Zaborowski M; Prokaryn P; Ciosek P
    Bioelectrochemistry; 2012 Oct; 87():104-13. PubMed ID: 22341624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer membrane-based ion-, gas- and bio-selective potentiometric sensors.
    Yim HS; Kibbey CE; Ma SC; Kliza DM; Liu D; Park SB; Espadas Torre C; Meyerhoff ME
    Biosens Bioelectron; 1993; 8(1):1-38. PubMed ID: 8499085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond potentiometry: robust electrochemical ion sensor concepts in view of remote chemical sensing.
    Bakker E; Bhakthavatsalam V; Gemene KL
    Talanta; 2008 May; 75(3):629-35. PubMed ID: 18585124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. History of Cobaltabis(dicarbollide) in Potentiometry, No Need for Ionophores to Get an Excellent Selectivity.
    Stoica AI; Viñas C; Teixidor F
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cacodylate Sensors and their Application in the Determination of Amino Acid Levels in Biological Samples.
    Abd-Rabboh HSM; Kamel AH; Alshehri FHA
    J AOAC Int; 2021 Mar; 104(1):113-121. PubMed ID: 33751065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical Evaluation of Laboratory Potentiometric Electronic Tongues for Pharmaceutical Analysis-An Overview.
    Łabańska M; Ciosek-Skibińska P; Wróblewski W
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode.
    Ghahraman Afshar M; Crespo GA; Bakker E
    Anal Chem; 2012 Oct; 84(20):8813-21. PubMed ID: 22994137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiometric Electronic Tongue for Quantitative Ion Analysis in Natural Mineral Waters.
    Cuartero M; Ruiz A; Galián M; Ortuño JA
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.