These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 22163810)

  • 1. A review of non-invasive techniques to detect and predict localised muscle fatigue.
    Al-Mulla MR; Sepulveda F; Colley M
    Sensors (Basel); 2011; 11(4):3545-94. PubMed ID: 22163810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An autonomous wearable system for predicting and detecting localised muscle fatigue.
    Al-Mulla MR; Sepulveda F; Colley M
    Sensors (Basel); 2011; 11(2):1542-57. PubMed ID: 22319367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.
    Han H; Jo S; Kim J
    Med Biol Eng Comput; 2015 Jul; 53(7):577-88. PubMed ID: 25752771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel pseudo-wavelet function for MMG signal extraction during dynamic fatiguing contractions.
    Al-Mulla MR; Sepulveda F
    Sensors (Basel); 2014 May; 14(6):9489-504. PubMed ID: 24878591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel feature modelling the prediction and detection of sEMG muscle fatigue towards an automated wearable system.
    Al-Mulla MR; Sepulveda F
    Sensors (Basel); 2010; 10(5):4838-54. PubMed ID: 22399910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography.
    Blangsted AK; Sjøgaard G; Madeleine P; Olsen HB; Søgaard K
    J Electromyogr Kinesiol; 2005 Apr; 15(2):138-48. PubMed ID: 15664144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of localized muscle fatigue with genetic programming on sEMG during isometric contraction.
    Al-Mulla MR; Sepulveda F; Colley M; Kattan A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2633-8. PubMed ID: 19965229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of accumulated muscle fatigue on the mechanomyographic waveform: implications for injury prediction.
    Tosovic D; Than C; Brown JM
    Eur J Appl Physiol; 2016 Aug; 116(8):1485-94. PubMed ID: 27260367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions.
    Nazmi N; Abdul Rahman MA; Yamamoto S; Ahmad SA; Zamzuri H; Mazlan SA
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The surface mechanomyogram as a tool to describe the influence of fatigue on biceps brachii motor unit activation strategy. Historical basis and novel evidence.
    Orizio C; Gobbo M; Diemont B; Esposito F; Veicsteinas A
    Eur J Appl Physiol; 2003 Oct; 90(3-4):326-36. PubMed ID: 12923643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [sEMG Time-frequency analysis techniques for evaluation of muscle fatigue and it's application in ergonomic studies].
    Wang DM; Wang J; Ge LZ
    Space Med Med Eng (Beijing); 2003 Oct; 16(5):387-90. PubMed ID: 14753244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative muscle study fatigue with sEMG signals during the isotonic and isometric tasks for diagnostics purposes.
    Sarmiento JF; Benevides AB; Moreira MH; Elias A; Bastos TF; Silva IV; Pelegrina CC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7163-6. PubMed ID: 22255990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanomyographic frequency-based fatigue threshold test.
    Hendrix CR; Housh TJ; Zuniga JM; Camic CL; Mielke M; Johnson GO; Schmidt RJ
    J Neurosci Methods; 2010 Mar; 187(1):1-7. PubMed ID: 19945484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of chaos in human fatigue mechanomyogarphy signals.
    Xie HB; Zheng YP; Jing-Yi G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4379-82. PubMed ID: 19964108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.
    Krueger E; Popović-Maneski L; Nohama P
    Artif Organs; 2018 Feb; 42(2):208-218. PubMed ID: 28762503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of long term muscle fatigue following prolonged intermittent contractions based on mechano- and electromyograms.
    Søgaard K; Blangsted AK; Jørgensen LV; Madeleine P; Sjøgaard G
    J Electromyogr Kinesiol; 2003 Oct; 13(5):441-50. PubMed ID: 12932418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies to identify changes in SEMG due to muscle fatigue during cycling.
    Singh VP; Kumar DK; Polus B; Fraser S
    J Med Eng Technol; 2007; 31(2):144-51. PubMed ID: 17365438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanomyography versus electromyography, in monitoring the muscular fatigue.
    Tarata MT
    Biomed Eng Online; 2003 Feb; 2():3. PubMed ID: 12625837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized Electrical Impedance Myography of the Biceps Brachii Muscle during Different Levels of Isometric Contraction and Fatigue.
    Li L; Shin H; Li X; Li S; Zhou P
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-frequency methods applied to muscle fatigue assessment during dynamic contractions.
    Knaflitz M; Bonato P
    J Electromyogr Kinesiol; 1999 Oct; 9(5):337-50. PubMed ID: 10527215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.