These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22163900)

  • 1. FT-IR-cPAS--new photoacoustic measurement technique for analysis of hot gases: a case study on VOCs.
    Hirschmann CB; Koivikko NS; Raittila J; Tenhunen J; Ojala S; Rahkamaa-Tolonen K; Marbach R; Hirschmann S; Keiski RL
    Sensors (Basel); 2011; 11(5):5270-89. PubMed ID: 22163900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fourier transform infrared photoacoustic multicomponent gas spectroscopy with optical cantilever detection.
    Hirschmann CB; Uotila J; Ojala S; Tenhunen J; Keiski RL
    Appl Spectrosc; 2010 Mar; 64(3):293-7. PubMed ID: 20223064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive multi-species photoacoustic gas detection based on mid-infrared supercontinuum source and miniature multipass cell.
    Mikkonen T; Hieta T; Genty G; Toivonen J
    Phys Chem Chem Phys; 2022 Aug; 24(32):19481-19487. PubMed ID: 35929451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform infrared measurement of solid-, liquid-, and gas-phase samples with a single photoacoustic cell.
    Uotila J; Kauppinen J
    Appl Spectrosc; 2008 Jun; 62(6):655-60. PubMed ID: 18559153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic gas monitoring for anesthetic gas pollution measurements and its cross-sensitivity to alcoholic disinfectants.
    Herzog-Niescery J; Steffens T; Bellgardt M; Breuer-Kaiser A; Gude P; Vogelsang H; Weber TP; Seipp HM
    BMC Anesthesiol; 2019 Aug; 19(1):148. PubMed ID: 31399025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of molecular oxygen at low concentrations using quartz enhanced photoacoustic spectroscopy.
    Pohlkötter A; Köhring M; Willer U; Schade W
    Sensors (Basel); 2010; 10(9):8466-77. PubMed ID: 22163666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a solid electrolyte CO(2) sensor for the analysis of standard volatile organic compound gases.
    Kida T; Seo MH; Kishi S; Kanmura Y; Yamazoe N; Shimanoe K
    Anal Chem; 2010 Apr; 82(8):3315-9. PubMed ID: 20337430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.
    Mikkonen JJ; Raittila J; Rieppo L; Lappalainen R; Kullaa AM; Myllymaa S
    Appl Spectrosc; 2016 Sep; 70(9):1502-10. PubMed ID: 27354404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse temperature dependence of Henry's law coefficients for volatile organic compounds in supercooled water.
    Sieg K; Starokozhev E; Schmidt MU; Püttmann W
    Chemosphere; 2009 Sep; 77(1):8-14. PubMed ID: 19604535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O, and CO in air.
    Esler MB; Griffith DW; Wilson SR; Steele LP
    Anal Chem; 2000 Jan; 72(1):206-15. PubMed ID: 10655655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATR-FTIR sensor development for continuous on-line monitoring of chlorinated aliphatic hydrocarbons in a fixed-bed bioreactor.
    Acha V; Meurens M; Naveau H; Agathos SN
    Biotechnol Bioeng; 2000 Jun; 68(5):473-87. PubMed ID: 10797233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and optimization of a mid-infrared hollow waveguide gas sensor combined with a supported capillary membrane sampler.
    de Melas F; Pustogov VV; Croitoru N; Mizaikoff B
    Appl Spectrosc; 2003 Jun; 57(6):600-6. PubMed ID: 14658690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate Analysis as a Tool to Identify Concentrations from Strongly Overlapping Gas Spectra.
    Saalberg Y; Wolff M
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High sensitivity trace gas detection by cantilever-enhanced photoacoustic spectroscopy using a mid-infrared continuous-wave optical parametric oscillator.
    Peltola J; Vainio M; Hieta T; Uotila J; Sinisalo S; Metsälä M; Siltanen M; Halonen L
    Opt Express; 2013 Apr; 21(8):10240-50. PubMed ID: 23609733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of a microphone for photoacoustic spectroscopy.
    Wilcken K; Kauppinen J
    Appl Spectrosc; 2003 Sep; 57(9):1087-92. PubMed ID: 14611038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous detection of greenhouse gases CH
    Wang F; Wu J; Cheng Y; Fu L; Zhang J; Wang Q
    Opt Express; 2023 Oct; 31(21):33898-33913. PubMed ID: 37859159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and quantification of trace organic contaminants in water using the FT-IR-attenuated total reflectance technique.
    Lin W; Li Z
    Anal Chem; 2010 Jan; 82(2):505-15. PubMed ID: 20038113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid estimation of the biochemical methane potential of plant biomasses using Fourier transform mid-infrared photoacoustic spectroscopy.
    Bekiaris G; Triolo JM; Peltre C; Pedersen L; Jensen LS; Bruun S
    Bioresour Technol; 2015 Dec; 197():475-81. PubMed ID: 26369276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination.
    Holthoff E; Bender J; Pellegrino P; Fisher A
    Sensors (Basel); 2010; 10(3):1986-2002. PubMed ID: 22294910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.