These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 22163904)

  • 21. Optofluidic lasers and their applications in biochemical sensing.
    Zhang H; Zhang YN; Li L; Hu J; Li X; Zhao Y
    Lab Chip; 2023 Jun; 23(13):2959-2989. PubMed ID: 37293879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors.
    Zhang M; Huang J; Lu Y; Pang W; Zhang H; Duan X
    ACS Sens; 2018 Aug; 3(8):1584-1591. PubMed ID: 30039702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser processing for bio-microfluidics applications (part II).
    Khan Malek CG
    Anal Bioanal Chem; 2006 Aug; 385(8):1362-9. PubMed ID: 16773302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stem cells in microfluidics.
    van Noort D; Ong SM; Zhang C; Zhang S; Arooz T; Yu H
    Biotechnol Prog; 2009; 25(1):52-60. PubMed ID: 19205022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Holographic opto-fluidic microscopy.
    Bishara W; Zhu H; Ozcan A
    Opt Express; 2010 Dec; 18(26):27499-510. PubMed ID: 21197025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis.
    Tavakoli H; Mohammadi S; Li X; Fu G; Li X
    Trends Analyt Chem; 2022 Dec; 157():. PubMed ID: 37929277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass.
    He F; Liao Y; Lin J; Song J; Qiao L; Cheng Y; Sugioka K
    Sensors (Basel); 2014 Oct; 14(10):19402-40. PubMed ID: 25330047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical detection systems on microfluidic chips.
    Gai H; Li Y; Yeung ES
    Top Curr Chem; 2011; 304():171-201. PubMed ID: 21516387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An innovative opto-sensing workbench for bio-microfluidics monitoring and control.
    Bucolo M; Fortuna L; Sapuppo F
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6315-8. PubMed ID: 18003465
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfabrication of human organs-on-chips.
    Huh D; Kim HJ; Fraser JP; Shea DE; Khan M; Bahinski A; Hamilton GA; Ingber DE
    Nat Protoc; 2013 Nov; 8(11):2135-57. PubMed ID: 24113786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs.
    Hagemann C; Bailey MCD; Carraro E; Stankevich KS; Lionello VM; Khokhar N; Suklai P; Moreno-Gonzalez C; O'Toole K; Konstantinou G; Dix CL; Joshi S; Giagnorio E; Bergholt MS; Spicer CD; Imbert A; Tedesco FS; Serio A
    PLoS Biol; 2024 Mar; 22(3):e3002503. PubMed ID: 38478490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paper Microfluidics for Cell Analysis.
    Ma J; Yan S; Miao C; Li L; Shi W; Liu X; Luo Y; Liu T; Lin B; Wu W; Lu Y
    Adv Healthc Mater; 2019 Jan; 8(1):e1801084. PubMed ID: 30474359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic trap array for massively parallel imaging of Drosophila embryos.
    Levario TJ; Zhan M; Lim B; Shvartsman SY; Lu H
    Nat Protoc; 2013 Apr; 8(4):721-36. PubMed ID: 23493069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production.
    Tsao CW
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetic helical micromachines.
    Peyer KE; Tottori S; Qiu F; Zhang L; Nelson BJ
    Chemistry; 2013 Jan; 19(1):28-38. PubMed ID: 23203403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of micro/nanoparticles in microfluidic sensors: a review.
    Jiang Y; Wang H; Li S; Wen W
    Sensors (Basel); 2014 Apr; 14(4):6952-64. PubMed ID: 24755517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overview of advances in microfluidics and microfabrication.
    Minteer SD; Moore CM
    Methods Mol Biol; 2006; 321():1-2. PubMed ID: 16508059
    [No Abstract]   [Full Text] [Related]  

  • 38. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid opto-electric manipulation in microfluidics-opportunities and challenges.
    Kumar A; Williams SJ; Chuang HS; Green NG; Wereley ST
    Lab Chip; 2011 Jul; 11(13):2135-48. PubMed ID: 21603691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in paper-based sensors.
    Liana DD; Raguse B; Gooding JJ; Chow E
    Sensors (Basel); 2012; 12(9):11505-26. PubMed ID: 23112667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.