These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 22163929)
1. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929 [TBL] [Abstract][Full Text] [Related]
2. Novel dry polymer foam electrodes for long-term EEG measurement. Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371 [TBL] [Abstract][Full Text] [Related]
3. Novel hydrogel-based preparation-free EEG electrode. Alba NA; Sclabassi RJ; Sun M; Cui XT IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811 [TBL] [Abstract][Full Text] [Related]
4. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements. Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063 [TBL] [Abstract][Full Text] [Related]
5. Hydrophilic Conductive Sponge Sensors for Fast Setup, Low Impedance Bio-potential Measurements. Krishnan A; Rozylowicz K; Kelly SK; Grover P Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3973-3976. PubMed ID: 33018870 [TBL] [Abstract][Full Text] [Related]
6. Dry and noncontact EEG sensors for mobile brain-computer interfaces. Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514 [TBL] [Abstract][Full Text] [Related]
7. Design, Fabrication, and Experimental Validation of Novel Flexible Silicon-Based Dry Sensors for Electroencephalography Signal Measurements. Yu YH; Lu SW; Liao LD; Lin CT IEEE J Transl Eng Health Med; 2014; 2():2700307. PubMed ID: 27170884 [TBL] [Abstract][Full Text] [Related]
8. Development of Low-Contact-Impedance Dry Electrodes for Electroencephalogram Signal Acquisition. Damalerio RB; Lim R; Gao Y; Zhang TT; Cheng MY Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177657 [TBL] [Abstract][Full Text] [Related]
9. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes. Nathan V; Jafari R IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239 [TBL] [Abstract][Full Text] [Related]
11. Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation. Chi YM; Cauwenberghs G Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4218-21. PubMed ID: 19964104 [TBL] [Abstract][Full Text] [Related]
12. Design of the multi-channel electroencephalography-based brain-computer interface with novel dry sensors. Wu SL; Liao LD; Liou CH; Chen SA; Ko LW; Chen BW; Wang PS; Chen SF; Lin CT Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1793-7. PubMed ID: 23366259 [TBL] [Abstract][Full Text] [Related]
13. Conductive polymer foam surface improves the performance of a capacitive EEG electrode. Baek HJ; Lee HJ; Lim YG; Park KS IEEE Trans Biomed Eng; 2012 Dec; 59(12):3422-31. PubMed ID: 22961261 [TBL] [Abstract][Full Text] [Related]
14. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites. Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145 [TBL] [Abstract][Full Text] [Related]
15. Novel active comb-shaped dry electrode for EEG measurement in hairy site. Huang YJ; Wu CY; Wong AM; Lin BS IEEE Trans Biomed Eng; 2015 Jan; 62(1):256-63. PubMed ID: 25137719 [TBL] [Abstract][Full Text] [Related]
16. Design of smart EEG cap. Lin BS; Huang YK; Lin BS Comput Methods Programs Biomed; 2019 Sep; 178():41-46. PubMed ID: 31416561 [TBL] [Abstract][Full Text] [Related]
17. 3D Printable Dry EEG Electrodes with Coiled-Spring Prongs. Kimura M; Nakatani S; Nishida SI; Taketoshi D; Araki N Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825762 [TBL] [Abstract][Full Text] [Related]
18. Active Claw-Shaped Dry Electrodes for EEG Measurement in Hair Areas. Wang Z; Ding Y; Yuan W; Chen H; Chen W; Chen C Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534550 [TBL] [Abstract][Full Text] [Related]
19. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp. Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442 [TBL] [Abstract][Full Text] [Related]
20. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. Liao LD; Chen CY; Wang IJ; Chen SF; Li SY; Chen BW; Chang JY; Lin CT J Neuroeng Rehabil; 2012 Jan; 9():5. PubMed ID: 22284235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]