These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22164099)

  • 21. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.
    Hung SS; Chang CY; Hsu CJ; Chen SW
    Sensors (Basel); 2012; 12(7):8987-9005. PubMed ID: 23012529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A flexible super-capacitive solid-state power supply for miniature implantable medical devices.
    Meng C; Gall OZ; Irazoqui PP
    Biomed Microdevices; 2013 Dec; 15(6):973-83. PubMed ID: 23832644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and characterization of polyaniline/PVA humidity microsensors.
    Yang MZ; Dai CL; Lin WY
    Sensors (Basel); 2011; 11(8):8143-51. PubMed ID: 22164067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A standard CMOS humidity sensor without post-processing.
    Nizhnik O; Higuchi K; Maenaka K
    Sensors (Basel); 2011; 11(6):6197-202. PubMed ID: 22163949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wireless remote weather monitoring system based on MEMS technologies.
    Ma RH; Wang YH; Lee CY
    Sensors (Basel); 2011; 11(3):2715-27. PubMed ID: 22163762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wireless thermal sensor network with adaptive low power design.
    Lee HY; Chen SL; Chen CA; Huang HY; Luo CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5891-4. PubMed ID: 18003354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Enhanced Multiplication of RF Energy Harvesting Efficiency Using Relay Resonator for Food Monitoring.
    Cao XT; Chung WY
    Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31027382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Online soft sensor of humidity in PEM fuel cell based on dynamic partial least squares.
    Long R; Chen Q; Zhang L; Ma L; Quan S
    ScientificWorldJournal; 2013; 2013():923901. PubMed ID: 24453923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells.
    Zeng J; Zhou Y; Li L; Jiang SP
    Phys Chem Chem Phys; 2011 Jun; 13(21):10249-57. PubMed ID: 21541370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.
    Jung CY; Kim TH; Yi SC
    ChemSusChem; 2014 Feb; 7(2):466-73. PubMed ID: 24436310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing.
    Tousi MM; Zhang Y; Wan S; Yu L; Hou C; Yan N; Fink Y; Wang A; Jia X
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31810193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A flexible and low power telemetric sensing and monitoring system for chronic wound diagnostics.
    Mehmood N; Hariz A; Templeton S; Voelcker NH
    Biomed Eng Online; 2015 Mar; 14():17. PubMed ID: 25884377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly flexible, proton-conductive silicate glass electrolytes for medium-temperature/low-humidity proton exchange membrane fuel cells.
    Lee HJ; Kim JH; Won JH; Lim JM; Hong YT; Lee SY
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5034-43. PubMed ID: 23672268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Implementation of Low Power High-Efficient Transceiver for Body Channel Communications.
    Vijayalakshmi S; Nagarajan V
    J Med Syst; 2019 Feb; 43(4):81. PubMed ID: 30788605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-temperature low-humidity proton exchange membrane with "stream-reservoir" ionic channels for high-power-density fuel cells.
    Guan P; Zou Y; Zhang M; Zhong W; Xu J; Lei J; Ding H; Feng W; Liu F; Zhang Y
    Sci Adv; 2023 Apr; 9(17):eadh1386. PubMed ID: 37126562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploiting Self-Capacitances for Wireless Power Transfer.
    Alazzawi Y; Aono K; Scheller EL; Chakrabartty S
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):425-434. PubMed ID: 30794517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible and Lightweight Fuel Cell with High Specific Power Density.
    Ning F; He X; Shen Y; Jin H; Li Q; Li D; Li S; Zhan Y; Du Y; Jiang J; Yang H; Zhou X
    ACS Nano; 2017 Jun; 11(6):5982-5991. PubMed ID: 28605195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dual band wireless power and data telemetry for retinal prosthesis.
    Wang G; Liu W; Sivaprakasam M; Zhou M; Weiland JD; Humayun MS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4392-5. PubMed ID: 17946243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-Time Monitoring of the Temperature, Flow, and Pressure Inside High-Temperature Proton Exchange Membrane Fuel Cells.
    Lee CY; Weng FB; Chiu CW; Nawale SM; Lai BJ
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.
    Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K
    ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.