These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 22164448)
1. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters. Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit. Wang S; Kunselman AR; Ündar A Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381 [TBL] [Abstract][Full Text] [Related]
3. In Vitro Evaluation of Pediatric Hollow-Fiber Membrane Oxygenators on Hemodynamic Performance and Gaseous Microemboli Handling: An International Multicenter/Multidisciplinary Approach. Wang S; Caneo LF; Jatene MB; Jatene FB; Cestari IA; Kunselman AR; Ündar A Artif Organs; 2017 Sep; 41(9):865-874. PubMed ID: 28597590 [TBL] [Abstract][Full Text] [Related]
4. In Vitro Comparison of Pediatric Oxygenators With and Without Integrated Arterial Filters in Maintaining Optimal Hemodynamic Stability and Managing Gaseous Microemboli. Moroi M; Force M; Wang S; Kunselman AR; Ündar A Artif Organs; 2018 Apr; 42(4):420-431. PubMed ID: 29377185 [TBL] [Abstract][Full Text] [Related]
5. Can the oxygenator screen filter reduce gaseous microemboli? Johagen D; Appelblad M; Svenmarker S J Extra Corpor Technol; 2014 Mar; 46(1):60-6. PubMed ID: 24779120 [TBL] [Abstract][Full Text] [Related]
6. An In-Vitro Study Comparing the GME Handling of Two Contemporary Oxygenators. Gisnarian CJ; Hedman A; Shann KG J Extra Corpor Technol; 2017 Dec; 49(4):262-272. PubMed ID: 29302117 [TBL] [Abstract][Full Text] [Related]
7. Post-arterial filter gaseous microemboli activity of five integral cardiotomy reservoirs during venting: an in vitro study. Myers GJ; Voorhees C; Haynes R; Eke B J Extra Corpor Technol; 2009 Mar; 41(1):20-7. PubMed ID: 19361028 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line. Qiu F; Peng S; Kunselman A; Ündar A Artif Organs; 2010 Nov; 34(11):1053-7. PubMed ID: 21137158 [TBL] [Abstract][Full Text] [Related]
10. Clinical gaseous microemboli assessment of an oxygenator with integral arterial filter in the pediatric population. Preston TJ; Gomez D; Olshove VF; Phillips A; Galantowicz M J Extra Corpor Technol; 2009 Dec; 41(4):226-30. PubMed ID: 20092077 [TBL] [Abstract][Full Text] [Related]
11. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators. Jabur GN; Sidhu K; Willcox TW; Mitchell SJ Perfusion; 2016 Jul; 31(5):409-17. PubMed ID: 26643883 [TBL] [Abstract][Full Text] [Related]
12. Effect of Normobaric versus Hypobaric Oxygenation on Gaseous Microemboli Removal in a Diffusion Membrane Oxygenator: An In Vitro Comparison. Schuldes M; Riley JB; Francis SG; Clingan S J Extra Corpor Technol; 2016 Sep; 48(3):129-136. PubMed ID: 27729706 [TBL] [Abstract][Full Text] [Related]
13. An in vitro evaluation of gaseous microemboli handling by contemporary venous reservoirs and oxygenator systems using EDAC. Stanzel RD; Henderson M Perfusion; 2016 Jan; 31(1):38-44. PubMed ID: 25987549 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of four pediatric cardiopulmonary bypass circuits in terms of perfusion quality and capturing gaseous microemboli. Mathis RK; Lin J; Dogal NM; Qiu F; Kunselman A; Wang S; Ündar A Perfusion; 2012 Nov; 27(6):470-9. PubMed ID: 22751383 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of three hollow-fiber membrane oxygenators without integrated arterial filters for neonatal cardiopulmonary bypass. Dogal NM; Mathis RK; Lin J; Qiu F; Kunselman A; Undar A Perfusion; 2012 Mar; 27(2):132-40. PubMed ID: 22115879 [TBL] [Abstract][Full Text] [Related]
17. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter. Stehouwer MC; Legg KR; de Vroege R; Kelder JC; Hofman E; de Mol BA; Bruins P Perfusion; 2017 Mar; 32(2):118-125. PubMed ID: 27516417 [TBL] [Abstract][Full Text] [Related]
18. Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study. Hudacko A; Sievert A; Sistino J J Extra Corpor Technol; 2009 Sep; 41(3):166-71. PubMed ID: 19806800 [TBL] [Abstract][Full Text] [Related]
19. In vitro evaluation of Capiox FX05 and RX05 oxygenators in neonatal cardiopulmonary bypass circuits with varying venous reservoir and vacuum-assisted venous drainage levels. Sathianathan S; Nasir R; Wang S; Kunselman AR; Ündar A Artif Organs; 2020 Jan; 44(1):28-39. PubMed ID: 30512218 [TBL] [Abstract][Full Text] [Related]
20. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles. Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]