These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tri-meridional analysis using arbitrary meridians: a new solution. Burek H Ophthalmic Physiol Opt; 1994 Jan; 14(1):100-2. PubMed ID: 8152815 [TBL] [Abstract][Full Text] [Related]
3. Calculation and least-squares estimation of surface curvature and dioptric power from meridional measurements. Harris WF Ophthalmic Physiol Opt; 1992 Jan; 12(1):58-64. PubMed ID: 1584618 [TBL] [Abstract][Full Text] [Related]
4. Constrained least-squares estimation of surface curvature and dioptric power from meridional measurements. Harris WF Ophthalmic Physiol Opt; 1992 Jan; 12(1):65-8. PubMed ID: 1584619 [TBL] [Abstract][Full Text] [Related]
5. Assessment of surface power and curvature by measurements along meridians at 60, 120 and 180 degrees. Harris WF Ophthalmic Physiol Opt; 1990 Jul; 10(3):303-4. PubMed ID: 2216481 [No Abstract] [Full Text] [Related]
6. Meridional profiles of variance-covariance of dioptric power. Part 2. Profiles representing variation in one or more of sphere, cylinder and axis. Harris WF; Malan DJ Ophthalmic Physiol Opt; 1992 Oct; 12(4):471-7. PubMed ID: 1293536 [TBL] [Abstract][Full Text] [Related]
7. Superposition of sphero-cylindrical lenses using contour graphs. Hemenger RP J Am Optom Assoc; 1996 Oct; 67(10):606-9. PubMed ID: 8942133 [TBL] [Abstract][Full Text] [Related]
8. Interconverting the matrix and principal meridional representations of dioptric power in general including powers with nonorthogonal and complex principal meridians. Harris WF Ophthalmic Physiol Opt; 2001 May; 21(3):247-52. PubMed ID: 11396399 [TBL] [Abstract][Full Text] [Related]
9. Assessment of toroidal surfaces by the measurement of curvature in three fixed meridians. Harris WF Ophthalmic Physiol Opt; 1989 Oct; 9(4):457. PubMed ID: 2631019 [No Abstract] [Full Text] [Related]
10. Converting principal meridional representation of power to the coordinates of the power matrix using the matrix similarity transform. Abelman H Ophthalmic Physiol Opt; 2006 Jul; 26(4):426-30. PubMed ID: 16792743 [TBL] [Abstract][Full Text] [Related]
11. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction. Schmidbauer M; Schäfer P; Besedin S; Grigoriev D; Köhler R; Hanke M J Synchrotron Radiat; 2008 Nov; 15(Pt 6):549-57. PubMed ID: 18955760 [TBL] [Abstract][Full Text] [Related]
12. A micro-computer program package for the computation of intraocular lens powers. Etienne CE J Ophthalmic Nurs Technol; 1986; 5(2):58-60. PubMed ID: 3634018 [No Abstract] [Full Text] [Related]
13. Decentred optical axes and aberrations along principal visual field meridians. Charman WN; Atchison DA Vision Res; 2009 Jul; 49(14):1869-76. PubMed ID: 19426752 [TBL] [Abstract][Full Text] [Related]
17. A method for determining the mean value of refractive errors. Sauders H Br J Physiol Opt; 1980; 34():1-11. PubMed ID: 7260479 [TBL] [Abstract][Full Text] [Related]
18. Toroidal surface assessment by curvature measurements in three fixed meridians. Burek H Ophthalmic Physiol Opt; 1990 Jan; 10(1):95-6. PubMed ID: 2330224 [No Abstract] [Full Text] [Related]
19. Shining new light on old principles: localization of evanescent field interactions at infrared-attenuated total reflection sensing interfaces. Dobbs GT; Mizaikoff B Appl Spectrosc; 2006 Jun; 60(6):573-83. PubMed ID: 16808857 [TBL] [Abstract][Full Text] [Related]
20. Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets. Ben Ayed I; Mitiche A; Belhadj Z IEEE Trans Pattern Anal Mach Intell; 2006 Sep; 28(9):1493-500. PubMed ID: 16929734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]