These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 22164831)

  • 41. From water to land: How an invasive clam may function as a resource pulse to terrestrial invertebrates.
    Novais A; Souza AT; Ilarri M; Pascoal C; Sousa R
    Sci Total Environ; 2015 Dec; 538():664-71. PubMed ID: 26327634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging Midges Transport Pesticides from Aquatic to Terrestrial Ecosystems: Importance of Compound- and Organism-Specific Parameters.
    Roodt AP; Röder N; Pietz S; Kolbenschlag S; Manfrin A; Schwenk K; Bundschuh M; Schulz R
    Environ Sci Technol; 2022 May; 56(9):5478-5488. PubMed ID: 35441504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton.
    Kelly PT; Solomon CT; Weidel BC; Jones SE
    Ecology; 2014 May; 95(5):1236-42. PubMed ID: 25000755
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model.
    Solomon CT; Carpenter SR; Clayton MK; Cole JJ; Coloso JJ; Pace ML; Zanden MJ; Weidel BC
    Ecology; 2011 May; 92(5):1115-25. PubMed ID: 21661572
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An introduced plant affects aquatic-derived carbon in the diets of riparian birds.
    Riedl HL; Stinson L; Pejchar L; Clements WH
    PLoS One; 2018; 13(11):e0207389. PubMed ID: 30481226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics.
    Bartels P; Cucherousset J; Steger K; Eklöv P; Tranvik LJ; Hillebrand H
    Ecology; 2012 May; 93(5):1173-82. PubMed ID: 22764503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mode of existence and seasonality of midge larvae (Diptera: Chironomidae) in man-made lakes in the Coachella Valley, southern California.
    Lothrop BB; Mulla MS
    J Am Mosq Control Assoc; 1995 Mar; 11(1):77-85. PubMed ID: 7616195
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of predatory ants within and across ecosystems in bromeliad food webs.
    Gonçalves AZ; Srivastava DS; Oliveira PS; Romero GQ
    J Anim Ecol; 2017 Jul; 86(4):790-799. PubMed ID: 28342283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental evidence that terrestrial carbon subsidies increase CO2 flux from lake ecosystems.
    Lennon JT
    Oecologia; 2004 Mar; 138(4):584-91. PubMed ID: 14689297
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape.
    Raitif J; Plantegenest M; Agator O; Piscart C; Roussel JM
    Sci Total Environ; 2018 Dec; 644():594-601. PubMed ID: 29990909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aquatic predation alters a terrestrial prey subsidy.
    Wesner JS
    Ecology; 2010 May; 91(5):1435-44. PubMed ID: 20503875
    [TBL] [Abstract][Full Text] [Related]  

  • 52. From clear lakes to murky waters - tracing the functional response of high-latitude lake communities to concurrent 'greening' and 'browning'.
    Hayden B; Harrod C; Thomas SM; Eloranta AP; Myllykangas JP; Siwertsson A; Praebel K; Knudsen R; Amundsen PA; Kahilainen KK
    Ecol Lett; 2019 May; 22(5):807-816. PubMed ID: 30793453
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ecosystem engineering and predation: the multi-trophic impact of two ant species.
    Sanders D; van Veen FJ
    J Anim Ecol; 2011 May; 80(3):569-76. PubMed ID: 21244419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Climate change shifts the timing of nutritional flux from aquatic insects.
    Shipley JR; Twining CW; Mathieu-Resuge M; Parmar TP; Kainz M; Martin-Creuzburg D; Weber C; Winkler DW; Graham CH; Matthews B
    Curr Biol; 2022 Mar; 32(6):1342-1349.e3. PubMed ID: 35172126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs.
    Nakano S; Murakami M
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):166-70. PubMed ID: 11136253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-ecosystem nutrient subsidies in Arctic and alpine lakes: implications of global change for remote lakes.
    Burpee BT; Saros JE
    Environ Sci Process Impacts; 2020 May; 22(5):1166-1189. PubMed ID: 32159183
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Review on environmental alterations propagating from aquatic to terrestrial ecosystems.
    Schulz R; Bundschuh M; Gergs R; Brühl CA; Diehl D; Entling MH; Fahse L; Frör O; Jungkunst HF; Lorke A; Schäfer RB; Schaumann GE; Schwenk K
    Sci Total Environ; 2015 Dec; 538():246-61. PubMed ID: 26311581
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems.
    Jones TA; Chumchal MM; Drenner RW; Timmins GN; Nowlin WH
    Environ Toxicol Chem; 2013 Mar; 32(3):612-8. PubMed ID: 23180684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An assessment of assumptions and uncertainty in deuterium-based estimates of terrestrial subsidies to aquatic consumers.
    Brett MT; Holtgrieve GW; Schindler DE
    Ecology; 2018 May; 99(5):1073-1088. PubMed ID: 29714826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Food web efficiency differs between humic and clear water lake communities in response to nutrients and light.
    Faithfull CL; Mathisen P; Wenzel A; Bergström AK; Vrede T
    Oecologia; 2015 Mar; 177(3):823-835. PubMed ID: 25373827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.