These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 22165167)

  • 1. An in vitro method to quantitate gaseous microemboli production of bubble oxygenators. 1982.
    Sakauye LM; Servas FM; O'Connor KB; Cottonaro C
    J Extra Corpor Technol; 2011 Sep; 43(3):172-9. PubMed ID: 22165167
    [No Abstract]   [Full Text] [Related]  

  • 2. The bubble oxygenator as a source of gaseous microemboli.
    Yost G
    Med Instrum; 1985; 19(2):67-9. PubMed ID: 4000009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaseous microemboli production of bubble and membrane oxygenators.
    Pearson DT; Holden MP; Poslad SJ
    Life Support Syst; 1986; 4 Suppl 1():198-208. PubMed ID: 3747601
    [No Abstract]   [Full Text] [Related]  

  • 4. Gaseous microemboli and the influence of microporous membrane oxygenators.
    Weitkemper HH; Oppermann B; Spilker A; Knobl HJ; Körfer R
    J Extra Corpor Technol; 2005 Sep; 37(3):256-64. PubMed ID: 16350377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The detection of microemboli in the middle cerebral artery during cardiopulmonary bypass: a transcranial Doppler ultrasound investigation using membrane and bubble oxygenators.
    Padayachee TS; Parsons S; Theobold R; Linley J; Gosling RG; Deverall PB
    Ann Thorac Surg; 1987 Sep; 44(3):298-302. PubMed ID: 2957966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of gaseous microemboli in the cerebral circulation during cardiopulmonary bypass in dogs.
    Johnston WE; Stump DA; DeWitt DS; Vinten-Johansen J; O'Steen WK; James RL; Prough DS
    Circulation; 1993 Nov; 88(5 Pt 2):II319-29. PubMed ID: 8222173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of gaseous microemboli counts in arterial, simultaneous and venous heat exchange with a hollow fiber membrane oxygenator.
    Sutton RG; Riley JB; Merrill JH
    J Extra Corpor Technol; 1994; 26(2):56-60. PubMed ID: 10147369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical aspects of gas bubbles in blood.
    Butler BD
    Med Instrum; 1985; 19(2):59-62. PubMed ID: 3889566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro comparison of the delivery of gaseous microemboli and hemodynamic energy for a diagonal and a roller pump during simulated infantile cardiopulmonary bypass procedures.
    Dhami R; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2014 Jan; 38(1):56-63. PubMed ID: 23876021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaseous microemboli: sources, causes, and clinical considerations.
    Kurusz M
    Med Instrum; 1985; 19(2):73-6. PubMed ID: 4000011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic identification of sources of gaseous microemboli during open heart surgery.
    Gallagher EG; Pearson DT
    Thorax; 1973 May; 28(3):295-305. PubMed ID: 4724497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. We are forever pumping air: the human body has the amazing ability to absorb gaseous microemboli during cardiopulmonary bypass.
    Riley JB
    J Extra Corpor Technol; 2011 Sep; 43(3):170-1. PubMed ID: 22164459
    [No Abstract]   [Full Text] [Related]  

  • 14. A clinical evaluation of the gas transfer characteristics and gaseous microemboli production of two bubble oxygenators.
    Pearson DT; Holden MP; Poslad SJ; Murray A; Waterhouse PS
    Life Support Syst; 1984; 2(4):252-66. PubMed ID: 6441873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
    Guan Y; Palanzo D; Kunselman A; Undar A
    Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of microbubbles released by oxygenators during cardiopulmonary bypass by intraoperative transesophageal echocardiography.
    Meloni L; Abbruzzese PA; Cardu G; Aru GM; Loriga P; Ricchi A; Martelli V; Cherchi A
    Am J Cardiol; 1990 Aug; 66(4):511-4. PubMed ID: 2386124
    [No Abstract]   [Full Text] [Related]  

  • 17. Product design and its relation to the generation of gaseous microemboli in the extracorporeal circuit.
    Servas FM
    Med Instrum; 1985; 19(2):63-6. PubMed ID: 4000008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical comparison of two devices for detection of microemboli during cardiopulmonary bypass.
    Clayton RH; Pearson DT; Murray A
    Clin Phys Physiol Meas; 1990 Nov; 11(4):327-32. PubMed ID: 2279375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A clinical comparison of bubble elimination in Quadrox and Polystan oxygenators.
    Jirschik M; Keyl C; Beyersdorf F
    Perfusion; 2009 Nov; 24(6):423-7. PubMed ID: 20093338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "See, feel, change".
    Groom RC
    J Extra Corpor Technol; 2011 Sep; 43(3):101-2. PubMed ID: 22167841
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.