These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 22165167)
21. Extracorporeal circulation material evaluation: microemboli. Pearson DT; Poslad SJ; Murray A; Clayton R Life Support Syst; 1987; 5(1):53-67. PubMed ID: 3295404 [No Abstract] [Full Text] [Related]
22. Microemboli: an overview. Clark RE Med Instrum; 1985; 19(2):53-4. PubMed ID: 4000007 [No Abstract] [Full Text] [Related]
23. [Gas embolism in operations with artificial circulation]. Amosov NM; Ganushchak IuM; Maksimenko VB; Nastenko EA; Vadnev AA Grudn Khir; 1988; (1):32-6. PubMed ID: 3280418 [No Abstract] [Full Text] [Related]
24. The production of microemboli by various blood oxygenators. Kessler J; Patterson RH Ann Thorac Surg; 1970 Mar; 9(3):221-8. PubMed ID: 5413746 [No Abstract] [Full Text] [Related]
25. Foam formation and acute air emboli with the maquet paediatric Quadrox I: a word of caution. Fouilloux V; Davey L; Van Arsdell GS; Honjo O Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):163-5. PubMed ID: 24706171 [TBL] [Abstract][Full Text] [Related]
26. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass. Wang S; Woitas K; Clark JB; Myers JL; Undar A Artif Organs; 2009 Nov; 33(11):1026-30. PubMed ID: 20021476 [TBL] [Abstract][Full Text] [Related]
27. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model. Undar A; Ji B; Kunselman AR; Myers JL ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of three hollow-fiber membrane oxygenators without integrated arterial filters for neonatal cardiopulmonary bypass. Dogal NM; Mathis RK; Lin J; Qiu F; Kunselman A; Undar A Perfusion; 2012 Mar; 27(2):132-40. PubMed ID: 22115879 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of four pediatric cardiopulmonary bypass circuits in terms of perfusion quality and capturing gaseous microemboli. Mathis RK; Lin J; Dogal NM; Qiu F; Kunselman A; Wang S; Ündar A Perfusion; 2012 Nov; 27(6):470-9. PubMed ID: 22751383 [TBL] [Abstract][Full Text] [Related]
32. Reduction of microemboli count in the priming fluid of cardiopulmonary bypass circuits. Merkle F; Boettcher W; Schulz F; Kopitz M; Koster A; Hennig E; Hetzer R J Extra Corpor Technol; 2003 Jun; 35(2):133-8. PubMed ID: 12939022 [TBL] [Abstract][Full Text] [Related]
33. Successful survival from massive air embolism and circulatory arrest during cardio-pulmonary bypass. Lin TC; Sia SL; Wong KL; Lai KB; Chuang HI; Sit KF; Wei TT Ma Zui Xue Za Zhi; 1992 Dec; 30(4):265-70. PubMed ID: 1344242 [No Abstract] [Full Text] [Related]
34. Emboli (debris) produced by bubble oxygenators. Removal by filtration. Page US; Bigelow JC; Carter CR; Swank RL Ann Thorac Surg; 1974 Aug; 18(2):164-71. PubMed ID: 4621031 [No Abstract] [Full Text] [Related]
35. The capability of trapping gaseous microemboli of two pediatric arterial filters with pulsatile and nonpulsatile flow in a simulated infant CPB model. Wang S; Win KN; Kunselman AR; Woitas K; Myers JL; Undar A ASAIO J; 2008; 54(5):519-22. PubMed ID: 18812745 [TBL] [Abstract][Full Text] [Related]
36. Multifrequency transducer for microemboli classification and sizing. Palanchon P; Bouakaz A; Klein J; de Jong N IEEE Trans Biomed Eng; 2005 Dec; 52(12):2087-92. PubMed ID: 16366231 [TBL] [Abstract][Full Text] [Related]
37. A dynamic bubble trap reduces microbubbles during cardiopulmonary bypass: a case study. Schönburg M; Urbanek P; Erhardt G; Taborski U; Plechinger H; Hein S; Roth M; Klövekorn WP J Extra Corpor Technol; 2000 Sep; 32(3):165-9. PubMed ID: 11146963 [TBL] [Abstract][Full Text] [Related]
38. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system. Miller A; Wang S; Myers JL; Undar A ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742 [TBL] [Abstract][Full Text] [Related]
39. Does CO(2) flushing of the empty CPB circuit decrease the number of gaseous emboli in the prime? Nyman J; Rundby C; Svenarud P; van der Linden J Perfusion; 2009 Jul; 24(4):249-55. PubMed ID: 19864467 [TBL] [Abstract][Full Text] [Related]
40. Removal of gaseous microemboli from extracorporeal circulation. Pascale F Med Instrum; 1985; 19(2):70-2. PubMed ID: 4000010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]