BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 22165228)

  • 1. [Analysis on the target product from sewage sludge pyrolysis and experiments on using the char for enhancing plant cultivation].
    Song XD; Chen DZ; Wang ZH; He W
    Huan Jing Ke Xue; 2011 Sep; 32(9):2604-9. PubMed ID: 22165228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.
    Song XD; Xue XY; Chen DZ; He PJ; Dai XH
    Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Carbonization of heavy metal Cu implanted sewage sludge and stability of heavy metal in the resulting char].
    Dou XM; Chen DZ; Dai XH
    Huan Jing Ke Xue; 2014 Nov; 35(11):4359-64. PubMed ID: 25639117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics.
    Zhao B; Xu X; Zeng F; Li H; Chen X
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19423-19435. PubMed ID: 29728972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production.
    Zorpas AA; Arapoglou D; Panagiotis K
    Waste Manag; 2003; 23(1):27-35. PubMed ID: 12623099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screw pyrolysis technology for sewage sludge treatment.
    Tomasi Morgano M; Leibold H; Richter F; Stapf D; Seifert H
    Waste Manag; 2018 Mar; 73():487-495. PubMed ID: 28601579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance.
    Wang Z; Chen D; Song X; Zhao L
    Environ Technol; 2012 Dec; 33(22-24):2481-8. PubMed ID: 23437644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of heavy metals and radioactive metals in gasification of sewage sludge.
    Marrero TW; McAuley BP; Sutterlin WR; Steven Morris J; Manahan SE
    Waste Manag; 2004; 24(2):193-8. PubMed ID: 14761758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion.
    Stolarek P; Ledakowicz S
    Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge.
    Zhang L; Xiao B; Hu Z; Liu S; Cheng G; He P; Sun L
    Waste Manag; 2014 Jan; 34(1):180-4. PubMed ID: 24220150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge.
    Thomsen TP; Sárossy Z; Ahrenfeldt J; Henriksen UB; Frandsen FJ; Müller-Stöver DS
    J Environ Manage; 2017 Aug; 198(Pt 1):308-318. PubMed ID: 28478348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy and nutrient recovery from sewage sludge via pyrolysis.
    Bridle TR; Pritchard D
    Water Sci Technol; 2004; 50(9):169-75. PubMed ID: 15581009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis derived char from municipal and industrial sludge: Impact of organic decomposition and inorganic accumulation on the fuel characteristics of char.
    Chanaka Udayanga WD; Veksha A; Giannis A; Lim TT
    Waste Manag; 2019 Jan; 83():131-141. PubMed ID: 30514459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial oxidation of sewage sludge briquettes in a updraft fixed bed.
    Kim M; Lee Y; Park J; Ryu C; Ohm TI
    Waste Manag; 2016 Mar; 49():204-211. PubMed ID: 26860426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of sewage sludge and horticultural waste to develop artificial soil for plant cultivation in Singapore.
    Stabnikova O; Goh WK; Ding HB; Tay JH; Wang JY
    Bioresour Technol; 2005 Jun; 96(9):1073-80. PubMed ID: 15668204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating.
    Domínguez A; Menéndez JA; Inguanzo M; Pís JJ
    Bioresour Technol; 2006 Jul; 97(10):1185-93. PubMed ID: 16473008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.
    Jin J; Wang M; Cao Y; Wu S; Liang P; Li Y; Zhang J; Zhang J; Wong MH; Shan S; Christie P
    Bioresour Technol; 2017 Mar; 228():218-226. PubMed ID: 28064134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vermitechnology for sewage sludge recycling.
    Khwairakpam M; Bhargava R
    J Hazard Mater; 2009 Jan; 161(2-3):948-54. PubMed ID: 18515003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application.
    Jin Z; Chang F; Meng F; Wang C; Meng Y; Liu X; Wu J; Zuo J; Wang K
    Chemosphere; 2017 Oct; 184():1043-1053. PubMed ID: 28662548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC).
    Kleemann R; Chenoweth J; Clift R; Morse S; Pearce P; Saroj D
    Waste Manag; 2017 Feb; 60():201-210. PubMed ID: 27979424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.