BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

7994 related articles for article (PubMed ID: 22165729)

  • 1. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat.
    Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J
    Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease.
    Boeve BF; Silber MH; Saper CB; Ferman TJ; Dickson DW; Parisi JE; Benarroch EE; Ahlskog JE; Smith GE; Caselli RC; Tippman-Peikert M; Olson EJ; Lin SC; Young T; Wszolek Z; Schenck CH; Mahowald MW; Castillo PR; Del Tredici K; Braak H
    Brain; 2007 Nov; 130(Pt 11):2770-88. PubMed ID: 17412731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Historical overview of REM sleep behavior disorder in relation to its pathophysiology].
    Tachibana N
    Brain Nerve; 2009 May; 61(5):558-68. PubMed ID: 19514516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonin control of sleep-wake behavior.
    Monti JM
    Sleep Med Rev; 2011 Aug; 15(4):269-81. PubMed ID: 21459634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder.
    Luppi PH; Clément O; Sapin E; Gervasoni D; Peyron C; Léger L; Salvert D; Fort P
    Sleep Med Rev; 2011 Jun; 15(3):153-63. PubMed ID: 21115377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation.
    During MJ; Kaplitt MG; Stern MB; Eidelberg D
    Hum Gene Ther; 2001 Aug; 12(12):1589-91. PubMed ID: 11529246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats.
    Datta S; Siwek DF
    J Neurosci Res; 2002 Nov; 70(4):611-21. PubMed ID: 12404515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Rapid-eye-movement sleep disorders in Parkinson's disease].
    Gagnon JF; Montplaisir J; Bédard MA
    Rev Neurol (Paris); 2002 Feb; 158(2):135-52. PubMed ID: 11965170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA in pedunculopontine tegmentum increases rapid eye movement sleep in freely moving rats: possible role of GABA-ergic inputs from substantia nigra pars reticulata.
    Pal D; Mallick BN
    Neuroscience; 2009 Dec; 164(2):404-14. PubMed ID: 19698764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat.
    Semba K
    J Comp Neurol; 1993 Apr; 330(4):543-56. PubMed ID: 7686567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial response in the rat models of functionally distinct cholinergic neuronal denervations.
    Bataveljic D; Petrovic J; Lazic K; Saponjic J; Andjus P
    J Neurosci Res; 2015 Feb; 93(2):244-52. PubMed ID: 25250774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.
    Datta S; Siwek DF
    J Neurophysiol; 1997 Jun; 77(6):2975-88. PubMed ID: 9212250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor.
    Datta S
    J Neurophysiol; 2002 Apr; 87(4):1790-8. PubMed ID: 11929900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep.
    Monti JM
    Sleep Med Rev; 2010 Oct; 14(5):319-27. PubMed ID: 20153670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiology of REM sleep, cataplexy, and sleep paralysis.
    Hishikawa Y; Shimizu T
    Adv Neurol; 1995; 67():245-71. PubMed ID: 8848973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 400.