These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 22165843)

  • 1. Controlling the morphology of metal-promoted higher ordered assemblies of collagen peptides with varied core lengths.
    Pires MM; Lee J; Ernenwein D; Chmielewski J
    Langmuir; 2012 Jan; 28(4):1993-7. PubMed ID: 22165843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-triggered collagen peptide disk formation.
    Przybyla DE; Chmielewski J
    J Am Chem Soc; 2010 Jun; 132(23):7866-7. PubMed ID: 20499839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models.
    Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B
    J Am Chem Soc; 2003 Sep; 125(38):11500-1. PubMed ID: 13129344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoting self-assembly of collagen-related peptides into various higher-order structures by metal-histidine coordination.
    Hsu W; Chen YL; Horng JC
    Langmuir; 2012 Feb; 28(6):3194-9. PubMed ID: 22243030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular assembly of collagen triblock peptides.
    Martin R; Waldmann L; Kaplan DL
    Biopolymers; 2003 Dec; 70(4):435-44. PubMed ID: 14648755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture.
    Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB
    Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the morphology of metal-triggered collagen peptide assemblies through ligand alteration.
    Kotha RR; Chmielewski J
    Biopolymers; 2015 Jul; 104(4):379-83. PubMed ID: 26031615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of collagen peptides into microflorettes via metal coordination.
    Pires MM; Chmielewski J
    J Am Chem Soc; 2009 Feb; 131(7):2706-12. PubMed ID: 19182901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10.
    Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nishio H; Nakazawa T; Ohkubo T; Kobayashi Y
    J Pept Sci; 2005 Oct; 11(10):609-16. PubMed ID: 15880478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of cystine knots in collagen folding and stability, part I. Conformational properties of (Pro-Hyp-Gly)5 and (Pro-(4S)-FPro-Gly)5 model trimers with an artificial cystine knot.
    Barth D; Musiol HJ; Schütt M; Fiori S; Milbradt AG; Renner C; Moroder L
    Chemistry; 2003 Aug; 9(15):3692-702. PubMed ID: 12898696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 3-hydroxyproline residues on collagen stability.
    Jenkins CL; Bretscher LE; Guzei IA; Raines RT
    J Am Chem Soc; 2003 May; 125(21):6422-7. PubMed ID: 12785781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymorphism of collagen triple helix revealed by 19F NMR of model peptide [Pro-4(R)-hydroxyprolyl-Gly]3-[Pro-4(R)-fluoroprolyl-Gly]-[Pro-4(R)-hydroxyprolyl-Gly]3.
    Kawahara K; Nemoto N; Motooka D; Nishi Y; Doi M; Uchiyama S; Nakazawa T; Nishiuchi Y; Yoshida T; Ohkubo T; Kobayashi Y
    J Phys Chem B; 2012 Jun; 116(23):6908-15. PubMed ID: 22381006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides.
    Yang W; Battineni ML; Brodsky B
    Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix.
    Nishi Y; Uchiyama S; Doi M; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y
    Biochemistry; 2005 Apr; 44(16):6034-42. PubMed ID: 15835892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triple-helical peptides: an approach to collagen conformation, stability, and self-association.
    Brodsky B; Thiagarajan G; Madhan B; Kar K
    Biopolymers; 2008 May; 89(5):345-53. PubMed ID: 18275087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine.
    Beck K; Chan VC; Shenoy N; Kirkpatrick A; Ramshaw JA; Brodsky B
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4273-8. PubMed ID: 10725403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-assembled triple-helical peptide molecules: mimicry of collagen by molecular architecture and integrin-specific cell adhesion.
    Khew ST; Tong YW
    Biochemistry; 2008 Jan; 47(2):585-96. PubMed ID: 18154308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A statistically derived parameterization for the collagen triple-helix.
    Rainey JK; Goh MC
    Protein Sci; 2002 Nov; 11(11):2748-54. PubMed ID: 12381857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-mediated tandem coassembly of collagen peptides into banded microstructures.
    Pires MM; Przybyla DE; Rubert Pérez CM; Chmielewski J
    J Am Chem Soc; 2011 Sep; 133(37):14469-71. PubMed ID: 21863857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.