These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22165896)

  • 1. Protein complex detection with semi-supervised learning in protein interaction networks.
    Shi L; Lei X; Zhang A
    Proteome Sci; 2011 Oct; 9 Suppl 1(Suppl 1):S5. PubMed ID: 22165896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks.
    Palukuri MV; Marcotte EM
    bioRxiv; 2021 Oct; ():. PubMed ID: 34189530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Ensemble Learning Framework for Detecting Protein Complexes From PPI Networks.
    Wang R; Ma H; Wang C
    Front Genet; 2022; 13():839949. PubMed ID: 35281831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Complexes Detection Based on Semi-Supervised Network Embedding Model.
    Zhu J; Zheng Z; Yang M; Fung GPC; Huang C
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):797-803. PubMed ID: 31581089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super.Complex: A supervised machine learning pipeline for molecular complex detection in protein-interaction networks.
    Palukuri MV; Marcotte EM
    PLoS One; 2021; 16(12):e0262056. PubMed ID: 34972161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X; Zhou G; Shang J; Wang J; Peng J; Han J
    J Comput Biol; 2017 Sep; 24(9):923-941. PubMed ID: 28570104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein complexes using a supervised learning method combined with local structural information.
    Dong Y; Sun Y; Qin C
    PLoS One; 2018; 13(3):e0194124. PubMed ID: 29554120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting protein complex in protein interaction network - a supervised learning based method.
    Yu F; Yang Z; Tang N; Lin H; Wang J; Yang Z
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S4. PubMed ID: 25349902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A supervised protein complex prediction method with network representation learning and gene ontology knowledge.
    Wang X; Zhang Y; Zhou P; Liu X
    BMC Bioinformatics; 2022 Jul; 23(1):300. PubMed ID: 35879648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supervised maximum-likelihood weighting of composite protein networks for complex prediction.
    Yong CH; Liu G; Chua HN; Wong L
    BMC Syst Biol; 2012; 6 Suppl 2(Suppl 2):S13. PubMed ID: 23281936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes.
    Liu Q; Song J; Li J
    Sci Rep; 2016 Feb; 6():21223. PubMed ID: 26868667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L; Yan H; Zhang XF
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):463. PubMed ID: 29219066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B; Luo J; Liang C; Wang S; Song D
    Comput Biol Chem; 2015 Oct; 58():173-81. PubMed ID: 26298638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X; Yang Z; Sang S; Zhou Z; Wang L; Zhang Y; Lin H; Wang J; Xu B
    BMC Bioinformatics; 2018 Sep; 19(1):332. PubMed ID: 30241459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S; Ning K; Leong HW
    BMC Bioinformatics; 2010 Oct; 11():504. PubMed ID: 20939868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network.
    You ZH; Yin Z; Han K; Huang DS; Zhou X
    BMC Bioinformatics; 2010 Jun; 11():343. PubMed ID: 20573270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C; Mella C; Navarro G; Olivera-Nappa A; Araya J
    PLoS One; 2017; 12(9):e0183460. PubMed ID: 28937982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes.
    Yong CH; Wong L
    Biol Direct; 2015 Aug; 10():40. PubMed ID: 26231465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using indirect protein-protein interactions for protein complex prediction.
    Chua HN; Ning K; Sung WK; Leong HW; Wong L
    J Bioinform Comput Biol; 2008 Jun; 6(3):435-66. PubMed ID: 18574858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein complex detection in PPI networks based on data integration and supervised learning method.
    Yu F; Yang Z; Hu X; Sun Y; Lin H; Wang J
    BMC Bioinformatics; 2015; 16 Suppl 12(Suppl 12):S3. PubMed ID: 26329886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.