BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 22165960)

  • 1. Latent Semantic Indexing of PubMed abstracts for identification of transcription factor candidates from microarray derived gene sets.
    Roy S; Heinrich K; Phan V; Berry MW; Homayouni R
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S19. PubMed ID: 22165960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional cohesion of gene sets determined by latent semantic indexing of PubMed abstracts.
    Xu L; Furlotte N; Lin Y; Heinrich K; Berry MW; George EO; Homayouni R
    PLoS One; 2011 Apr; 6(4):e18851. PubMed ID: 21533142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple independent analyses reveal only transcription factors as an enriched functional class associated with microRNAs.
    Croft L; Szklarczyk D; Jensen LJ; Gorodkin J
    BMC Syst Biol; 2012 Jul; 6():90. PubMed ID: 22824421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TF-finder: a software package for identifying transcription factors involved in biological processes using microarray data and existing knowledge base.
    Cui X; Wang T; Chen HS; Busov V; Wei H
    BMC Bioinformatics; 2010 Aug; 11():425. PubMed ID: 20704747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-analysis discovery of tissue-specific DNA sequence motifs from mammalian gene expression data.
    Huber BR; Bulyk ML
    BMC Bioinformatics; 2006 Apr; 7():229. PubMed ID: 16643658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritization, clustering and functional annotation of MicroRNAs using latent semantic indexing of MEDLINE abstracts.
    Roy S; Curry BC; Madahian B; Homayouni R
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):350. PubMed ID: 27766940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trimming of mammalian transcriptional networks using network component analysis.
    Tran LM; Hyduke DR; Liao JC
    BMC Bioinformatics; 2010 Oct; 11():511. PubMed ID: 20942926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring microRNA and transcription factor regulatory networks in heterogeneous data.
    Le TD; Liu L; Liu B; Tsykin A; Goodall GJ; Satou K; Li J
    BMC Bioinformatics; 2013 Mar; 14():92. PubMed ID: 23497388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic identification of yeast cell cycle transcription factors using multiple data sources.
    Wu WS; Li WH
    BMC Bioinformatics; 2008 Dec; 9():522. PubMed ID: 19061501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TF-centered downstream gene set enrichment analysis: Inference of causal regulators by integrating TF-DNA interactions and protein post-translational modifications information.
    Liu Q; Tan Y; Huang T; Ding G; Tu Z; Liu L; Li Y; Dai H; Xie L
    BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S5. PubMed ID: 21172055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ModEx: A text mining system for extracting mode of regulation of transcription factor-gene regulatory interaction.
    Farahmand S; Riley T; Zarringhalam K
    J Biomed Inform; 2020 Feb; 102():103353. PubMed ID: 31857203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MORA and EnsembleTFpredictor: An ensemble approach to reveal functional transcription factor regulatory networks.
    Boyer K; Li L; Li T; Zhang B; Zhao G
    PLoS One; 2023; 18(11):e0294724. PubMed ID: 38032891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COPS: detecting co-occurrence and spatial arrangement of transcription factor binding motifs in genome-wide datasets.
    Ha N; Polychronidou M; Lohmann I
    PLoS One; 2012; 7(12):e52055. PubMed ID: 23272209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional Regulatory Network Analysis for Gastric Cancer Based on mRNA Microarray.
    Wang Y
    Pathol Oncol Res; 2017 Oct; 23(4):785-791. PubMed ID: 28078605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STOP: searching for transcription factor motifs using gene expression.
    Hertzberg L; Izraeli S; Domany E
    Bioinformatics; 2007 Jul; 23(14):1737-43. PubMed ID: 17488754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of upstream regulators for synovial expression signature genes in osteoarthritis.
    Fei Q; Lin J; Meng H; Wang B; Yang Y; Wang Q; Su N; Li J; Li D
    Joint Bone Spine; 2016 Oct; 83(5):545-51. PubMed ID: 26832188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.
    Xie W; Ji L; Zhao T; Gao P
    Med Sci Monit; 2015 May; 21():1333-44. PubMed ID: 25957414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-Analysis of Transcriptome Regulation During Induction to Cardiac Myocyte Fate From Mouse and Human Fibroblasts.
    Rastegar-Pouyani S; Khazaei N; Wee P; Yaqubi M; Mohammadnia A
    J Cell Physiol; 2017 Aug; 232(8):2053-2062. PubMed ID: 27579918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities.
    Narasimhan K; Lambert SA; Yang AW; Riddell J; Mnaimneh S; Zheng H; Albu M; Najafabadi HS; Reece-Hoyes JS; Fuxman Bass JI; Walhout AJ; Weirauch MT; Hughes TR
    Elife; 2015 Apr; 4():. PubMed ID: 25905672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.