These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 22166046)

  • 1. Probabilistic reconstruction of the tumor progression process in gene regulatory networks in the presence of uncertainty.
    Esfahani MS; Yoon BJ; Dougherty ER
    BMC Bioinformatics; 2011 Oct; 12 Suppl 10(Suppl 10):S9. PubMed ID: 22166046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intervention in a family of Boolean networks.
    Choudhary A; Datta A; Bittner ML; Dougherty ER
    Bioinformatics; 2006 Jan; 22(2):226-32. PubMed ID: 16286362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic multiple-valued gene networks.
    Zhu P; Han J
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):42-53. PubMed ID: 24681918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Splitting strategy for simulating genetic regulatory networks.
    You X; Liu X; Musa IH
    Comput Math Methods Med; 2014; 2014():683235. PubMed ID: 24624223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of Gene Regulatory Networks Using Bayesian Inverse Reinforcement Learning.
    Imani M; Braga-Neto UM
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1250-1261. PubMed ID: 29993697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene perturbation and intervention in context-sensitive stochastic Boolean networks.
    Zhu P; Liang J; Han J
    BMC Syst Biol; 2014 May; 8():60. PubMed ID: 24886608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of State Trajectories in Gene Regulatory Networks.
    Karbalayghareh A; Braga-Neto U; Hua J; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):68-82. PubMed ID: 27740496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation study in Probabilistic Boolean Network models for genetic regulatory networks.
    Zhang SQ; Ching WK; Ng MK; Akutsu T
    Int J Data Min Bioinform; 2007; 1(3):217-40. PubMed ID: 18399072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitting Boolean networks from steady state perturbation data.
    Almudevar A; McCall MN; McMurray H; Land H
    Stat Appl Genet Mol Biol; 2011 Oct; 10(1):. PubMed ID: 23089817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A CoD-based reduction algorithm for designing stationary control policies on Boolean networks.
    Ghaffari N; Ivanov I; Qian X; Dougherty ER
    Bioinformatics; 2010 Jun; 26(12):1556-63. PubMed ID: 20421196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Markovian approach to the control of genetic regulatory networks.
    Chen PC; Chen JW
    Biosystems; 2007; 90(2):535-45. PubMed ID: 17320274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intervention in context-sensitive probabilistic Boolean networks.
    Pal R; Datta A; Bittner ML; Dougherty ER
    Bioinformatics; 2005 Apr; 21(7):1211-8. PubMed ID: 15531600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental design framework for Markovian gene regulatory networks under stationary control policy.
    Dehghannasiri R; Shahrokh Esfahani M; Dougherty ER
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):137. PubMed ID: 30577732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated approach to infer dynamic protein-gene interactions - A case study of the human P53 protein.
    Wang J; Wu Q; Hu XT; Tian T
    Methods; 2016 Nov; 110():3-13. PubMed ID: 27514497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets.
    Lu J; Zeng H; Liang Z; Chen L; Zhang L; Zhang H; Liu H; Jiang H; Shen B; Huang M; Geng M; Spiegel S; Luo C
    Sci Rep; 2015 Oct; 5():14739. PubMed ID: 26446703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically Bayesian robust classifier for single-cell gene expression trajectories in gene regulatory networks.
    Karbalayghareh A; Braga-Neto U; Dougherty ER
    BMC Syst Biol; 2018 Mar; 12(Suppl 3):23. PubMed ID: 29589564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks.
    Liang J; Han J
    BMC Syst Biol; 2012 Aug; 6():113. PubMed ID: 22929591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BTR: training asynchronous Boolean models using single-cell expression data.
    Lim CY; Wang H; Woodhouse S; Piterman N; Wernisch L; Fisher J; Göttgens B
    BMC Bioinformatics; 2016 Sep; 17(1):355. PubMed ID: 27600248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TP53 gene network in a postgenomic era.
    Soussi T
    Hum Mutat; 2014 Jun; 35(6):641-2. PubMed ID: 24753184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.