These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 22166247)

  • 1. Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action.
    Bansal S; Srivastava A; Mukherjee G; Pandey R; Verma AK; Mishra P; Kundu B
    FASEB J; 2012 Mar; 26(3):1161-71. PubMed ID: 22166247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
    Kitamura S; Fujishima K; Sato A; Tsuchiya D; Tomita M; Kanai A
    Biochem J; 2010 Feb; 426(3):337-44. PubMed ID: 20047562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus.
    Arnott MA; Michael RA; Thompson CR; Hough DW; Danson MJ
    J Mol Biol; 2000 Dec; 304(4):657-68. PubMed ID: 11099387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional insights into an archaeal L-asparaginase obtained through the linker-less assembly of constituent domains.
    Tomar R; Sharma P; Srivastava A; Bansal S; ; Kundu B
    Acta Crystallogr D Biol Crystallogr; 2014 Dec; 70(Pt 12):3187-97. PubMed ID: 25478837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures.
    Theriot CM; Du X; Tove SR; Grunden AM
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1715-26. PubMed ID: 20422176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional insights into Erwinia carotovora L-asparaginase.
    Papageorgiou AC; Posypanova GA; Andersson CS; Sokolov NN; Krasotkina J
    FEBS J; 2008 Sep; 275(17):4306-16. PubMed ID: 18647344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the substrate specificity of Escherichia coli asparaginase. II. Selective reduction of glutaminase activity by amino acid replacements at position 248.
    Derst C; Henseling J; Röhm KH
    Protein Sci; 2000 Oct; 9(10):2009-17. PubMed ID: 11106175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning, expression and characterisation of Erwinia carotovora L-asparaginase.
    Kotzia GA; Labrou NE
    J Biotechnol; 2005 Oct; 119(4):309-23. PubMed ID: 15951039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mutant of Escherichia coli asparaginase II to reduction of the glutaminase activity in treatment of acute lymphocytic leukemia by molecular dynamics simulations and QM-MM studies.
    Ardalan N; Mirzaie S; Sepahi AA; Khavari-Nejad RA
    Med Hypotheses; 2018 Mar; 112():7-17. PubMed ID: 29447943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization.
    Cheung YY; Lam SY; Chu WK; Allen MD; Bycroft M; Wong KB
    Biochemistry; 2005 Mar; 44(12):4601-11. PubMed ID: 15779887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient Pyrococcus furiosus recombinant L-asparaginase with no glutaminase activity: Expression, purification, functional characterization, and cytotoxicity on THP-1, A549 and Caco-2 cell lines.
    Saeed H; Hemida A; El-Nikhely N; Abdel-Fattah M; Shalaby M; Hussein A; Eldoksh A; Ataya F; Aly N; Labrou N; Nematalla H
    Int J Biol Macromol; 2020 Aug; 156():812-828. PubMed ID: 32311402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four Inserts within the Catalytic Domain Confer Extra Stability and Activity to Hyperthermostable Pyrolysin from Pyrococcus furiosus.
    Gao X; Zeng J; Yi H; Zhang F; Tang B; Tang XF
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of Helicobacter pylori L-asparaginase at 1.4 A resolution.
    Dhavala P; Papageorgiou AC
    Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1253-61. PubMed ID: 19966411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an alpha-amylase and a cyclodextrin-hydrolyzing enzyme.
    Yang SJ; Lee HS; Park CS; Kim YR; Moon TW; Park KH
    Appl Environ Microbiol; 2004 Oct; 70(10):5988-95. PubMed ID: 15466542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and Low-Resolution Structure of an Extremely Thermostable Esterase of Potential Biotechnological Interest from Pyrococcus furiosus.
    Mandelli F; Gonçalves TA; Gandin CA; Oliveira AC; Oliveira Neto M; Squina FM
    Mol Biotechnol; 2016 Nov; 58(11):757-766. PubMed ID: 27665110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and structural characterization of mammalian-like purine nucleoside phosphorylase from the Archaeon Pyrococcus furiosus.
    Cacciapuoti G; Gorassini S; Mazzeo MF; Siciliano RA; Carbone V; Zappia V; Porcelli M
    FEBS J; 2007 May; 274(10):2482-95. PubMed ID: 17419725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Theriot CM; Tove SR; Grunden AM
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):177-88. PubMed ID: 19784642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of a thermostable adenosylmethionine synthetase from the archaeon Pyrococcus furiosus with high catalytic power.
    Porcelli M; Ilisso CP; De Leo E; Cacciapuoti G
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2916-33. PubMed ID: 25577347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of stability and enzymatic activity by site-directed mutagenesis of E. coli asparaginase II.
    Verma S; Mehta RK; Maiti P; Röhm KH; Sonawane A
    Biochim Biophys Acta; 2014 Jul; 1844(7):1219-30. PubMed ID: 24721562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Suppression of telomerase activity leukemic cells by mutant forms of Rhodospirillum rubrum L-asparaginase].
    Pokrovskaya MV; Zhdanov DD; Eldarov MA; Aleksandrova SS; Veselovskiy AV; Pokrovskiy VS; Grishin DV; Gladilina JA; Sokolov NN
    Biomed Khim; 2017 Jan; 63(1):62-74. PubMed ID: 28251953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.