These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 22166340)
1. Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto. Cowled C; Baker ML; Zhou P; Tachedjian M; Wang LF Dev Comp Immunol; 2012 Apr; 36(4):657-64. PubMed ID: 22166340 [TBL] [Abstract][Full Text] [Related]
2. Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in Rainbow trout (Oncorhynchus mykiss). Chang M; Collet B; Nie P; Lester K; Campbell S; Secombes CJ; Zou J J Virol; 2011 Aug; 85(16):8403-12. PubMed ID: 21680521 [TBL] [Abstract][Full Text] [Related]
3. Cloning, expression and antiviral activity of IFNγ from the Australian fruit bat, Pteropus alecto. Janardhana V; Tachedjian M; Crameri G; Cowled C; Wang LF; Baker ML Dev Comp Immunol; 2012 Mar; 36(3):610-8. PubMed ID: 22093696 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5. Li X; Lu C; Stewart M; Xu H; Strong RK; Igumenova T; Li P Arch Biochem Biophys; 2009 Aug; 488(1):23-33. PubMed ID: 19531363 [TBL] [Abstract][Full Text] [Related]
5. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. Takahasi K; Kumeta H; Tsuduki N; Narita R; Shigemoto T; Hirai R; Yoneyama M; Horiuchi M; Ogura K; Fujita T; Inagaki F J Biol Chem; 2009 Jun; 284(26):17465-74. PubMed ID: 19380577 [TBL] [Abstract][Full Text] [Related]
6. Type III IFN receptor expression and functional characterisation in the pteropid bat, Pteropus alecto. Zhou P; Cowled C; Marsh GA; Shi Z; Wang LF; Baker ML PLoS One; 2011; 6(9):e25385. PubMed ID: 21980438 [TBL] [Abstract][Full Text] [Related]
7. Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Cowled C; Baker M; Tachedjian M; Zhou P; Bulach D; Wang LF Dev Comp Immunol; 2011 Jan; 35(1):7-18. PubMed ID: 20692287 [TBL] [Abstract][Full Text] [Related]
8. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Pippig DA; Hellmuth JC; Cui S; Kirchhofer A; Lammens K; Lammens A; Schmidt A; Rothenfusser S; Hopfner KP Nucleic Acids Res; 2009 Apr; 37(6):2014-25. PubMed ID: 19208642 [TBL] [Abstract][Full Text] [Related]
9. Origin and evolution of the RIG-I like RNA helicase gene family. Zou J; Chang M; Nie P; Secombes CJ BMC Evol Biol; 2009 Apr; 9():85. PubMed ID: 19400936 [TBL] [Abstract][Full Text] [Related]
10. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Satoh T; Kato H; Kumagai Y; Yoneyama M; Sato S; Matsushita K; Tsujimura T; Fujita T; Akira S; Takeuchi O Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1512-7. PubMed ID: 20080593 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions. Glennon NB; Jabado O; Lo MK; Shaw ML J Virol; 2015 Aug; 89(15):7550-66. PubMed ID: 25972557 [TBL] [Abstract][Full Text] [Related]
12. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Miyashita M; Oshiumi H; Matsumoto M; Seya T Mol Cell Biol; 2011 Sep; 31(18):3802-19. PubMed ID: 21791617 [TBL] [Abstract][Full Text] [Related]
13. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Saito T; Hirai R; Loo YM; Owen D; Johnson CL; Sinha SC; Akira S; Fujita T; Gale M Proc Natl Acad Sci U S A; 2007 Jan; 104(2):582-7. PubMed ID: 17190814 [TBL] [Abstract][Full Text] [Related]
14. RIG-I-like receptors evolved adaptively in mammals, with parallel evolution at LGP2 and RIG-I. Cagliani R; Forni D; Tresoldi C; Pozzoli U; Filippi G; Rainone V; De Gioia L; Clerici M; Sironi M J Mol Biol; 2014 Mar; 426(6):1351-65. PubMed ID: 24211720 [TBL] [Abstract][Full Text] [Related]
15. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. Louber J; Brunel J; Uchikawa E; Cusack S; Gerlier D BMC Biol; 2015 Jul; 13():54. PubMed ID: 26215161 [TBL] [Abstract][Full Text] [Related]
16. Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection. Zhou P; Cowled C; Wang LF; Baker ML Dev Comp Immunol; 2013; 40(3-4):240-7. PubMed ID: 23541614 [TBL] [Abstract][Full Text] [Related]
17. Structure and function of LGP2, a DEX(D/H) helicase that regulates the innate immunity response. Murali A; Li X; Ranjith-Kumar CT; Bhardwaj K; Holzenburg A; Li P; Kao CC J Biol Chem; 2008 Jun; 283(23):15825-33. PubMed ID: 18411269 [TBL] [Abstract][Full Text] [Related]
18. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) in fish: current knowledge and future perspectives. Chen SN; Zou PF; Nie P Immunology; 2017 May; 151(1):16-25. PubMed ID: 28109007 [TBL] [Abstract][Full Text] [Related]
19. Sensing of viral nucleic acids by RIG-I: from translocation to translation. Schmidt A; Rothenfusser S; Hopfner KP Eur J Cell Biol; 2012 Jan; 91(1):78-85. PubMed ID: 21496944 [TBL] [Abstract][Full Text] [Related]
20. The immune gene repertoire of an important viral reservoir, the Australian black flying fox. Papenfuss AT; Baker ML; Feng ZP; Tachedjian M; Crameri G; Cowled C; Ng J; Janardhana V; Field HE; Wang LF BMC Genomics; 2012 Jun; 13():261. PubMed ID: 22716473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]