These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 22167673)
1. Protein dynamics by ¹⁵N nuclear magnetic relaxation. Ferrage F Methods Mol Biol; 2012; 831():141-63. PubMed ID: 22167673 [TBL] [Abstract][Full Text] [Related]
2. An exchange-free measure of 15N transverse relaxation: an NMR spectroscopy application to the study of a folding intermediate with pervasive chemical exchange. Hansen DF; Yang D; Feng H; Zhou Z; Wiesner S; Bai Y; Kay LE J Am Chem Soc; 2007 Sep; 129(37):11468-79. PubMed ID: 17722922 [TBL] [Abstract][Full Text] [Related]
3. Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics. Ishima R Top Curr Chem; 2012; 326():99-122. PubMed ID: 21898206 [TBL] [Abstract][Full Text] [Related]
4. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations. Hass MA; Thuesen MH; Christensen HE; Led JJ J Am Chem Soc; 2004 Jan; 126(3):753-65. PubMed ID: 14733549 [TBL] [Abstract][Full Text] [Related]
5. Quantitative measurement of transverse and longitudinal cross-correlation between 13C-1H dipolar interaction and 13C chemical shift anisotropy: application to a 13C-labeled DNA duplex. Kojima C; Ono A; Kainosho M; James TL J Magn Reson; 1999 Feb; 136(2):169-75. PubMed ID: 9986759 [TBL] [Abstract][Full Text] [Related]
6. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments. Chevelkov V; Fink U; Reif B J Am Chem Soc; 2009 Oct; 131(39):14018-22. PubMed ID: 19743845 [TBL] [Abstract][Full Text] [Related]
7. Detection of correlated dynamics on multiple timescales by measurement of the differential relaxation of zero- and double-quantum coherences involving sidechain methyl groups in proteins. Del Rio A; Anand A; Ghose R J Magn Reson; 2006 May; 180(1):1-17. PubMed ID: 16473030 [TBL] [Abstract][Full Text] [Related]
8. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analysis of conformational exchange contributions to 1H-15N multiple-quantum relaxation using field-dependent measurements. Time scale and structural characterization of exchange in a calmodulin C-terminal domain mutant. Lundström P; Akke M J Am Chem Soc; 2004 Jan; 126(3):928-35. PubMed ID: 14733570 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of two simplified 15N-NMR methods for determining micros-ms dynamics of proteins. Hass MA; Led JJ Magn Reson Chem; 2006 Aug; 44(8):761-9. PubMed ID: 16705625 [TBL] [Abstract][Full Text] [Related]
11. Evidence for slow motion in proteins by multiple refocusing of heteronuclear nitrogen/proton multiple quantum coherences in NMR. Dittmer J; Bodenhausen G J Am Chem Soc; 2004 Feb; 126(5):1314-5. PubMed ID: 14759169 [TBL] [Abstract][Full Text] [Related]
12. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance. Eletsky A; Kienhöfer A; Hilvert D; Pervushin K Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424 [TBL] [Abstract][Full Text] [Related]
13. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. Loth K; Pelupessy P; Bodenhausen G J Am Chem Soc; 2005 Apr; 127(16):6062-8. PubMed ID: 15839707 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the overall rotational diffusion of a protein from 15N relaxation measurements and hydrodynamic calculations. Blake-Hall J; Walker O; Fushman D Methods Mol Biol; 2004; 278():139-60. PubMed ID: 15317996 [TBL] [Abstract][Full Text] [Related]
15. TROSY-based NMR experiments for the study of macromolecular dynamics and hydrogen bonding. Zhu G; Xia Y; Lin D; Gao X Methods Mol Biol; 2004; 278():161-84. PubMed ID: 15317997 [TBL] [Abstract][Full Text] [Related]
16. An investigation of the dynamics of ribosomal protein L9 using heteronuclear NMR relaxation measurements. Lillemoen J; Hoffman DW J Mol Biol; 1998 Aug; 281(3):539-51. PubMed ID: 9698568 [TBL] [Abstract][Full Text] [Related]
17. Analysis of interdomain dynamics in a two-domain protein using residual dipolar couplings together with 15N relaxation data. Ryabov Y; Fushman D Magn Reson Chem; 2006 Jul; 44 Spec No():S143-51. PubMed ID: 16823894 [TBL] [Abstract][Full Text] [Related]
18. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation. Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634 [TBL] [Abstract][Full Text] [Related]
19. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels. Malmendal A; Evenäs J; Forsén S; Akke M J Mol Biol; 1999 Nov; 293(4):883-99. PubMed ID: 10543974 [TBL] [Abstract][Full Text] [Related]
20. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins. Nadaud PS; Helmus JJ; Kall SL; Jaroniec CP J Am Chem Soc; 2009 Jun; 131(23):8108-20. PubMed ID: 19445506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]