These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 22167679)

  • 1. In-cell NMR spectroscopy in Escherichia coli.
    Robinson KE; Reardon PN; Spicer LD
    Methods Mol Biol; 2012; 831():261-77. PubMed ID: 22167679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy.
    Serber Z; Selenko P; Hänsel R; Reckel S; Löhr F; Ferrell JE; Wagner G; Dötsch V
    Nat Protoc; 2006; 1(6):2701-9. PubMed ID: 17406526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy.
    Crowley PB; Chow E; Papkovskaia T
    Chembiochem; 2011 May; 12(7):1043-8. PubMed ID: 21448871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Cell NMR spectroscopy: inhibition of autologous protein expression reduces Escherichia coli lysis.
    Cruzeiro-Silva C; Albernaz FP; Valente AP; Almeida FC
    Cell Biochem Biophys; 2006; 44(3):497-502. PubMed ID: 16679537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidimensional NMR spectroscopy for protein characterization and assignment inside cells.
    Reardon PN; Spicer LD
    J Am Chem Soc; 2005 Aug; 127(31):10848-9. PubMed ID: 16076188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-cell NMR of intrinsically disordered proteins in prokaryotic cells.
    Ito Y; Mikawa T; Smith BO
    Methods Mol Biol; 2012; 895():19-31. PubMed ID: 22760309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective rotational correlation times of proteins from NMR relaxation interference.
    Lee D; Hilty C; Wider G; Wüthrich K
    J Magn Reson; 2006 Jan; 178(1):72-6. PubMed ID: 16188473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-free membrane protein expression for solid-state NMR.
    Abdine A; Park KH; Warschawski DE
    Methods Mol Biol; 2012; 831():85-109. PubMed ID: 22167670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins.
    Garcia-Herrero A; Peacock RS; Howard SP; Vogel HJ
    Mol Microbiol; 2007 Nov; 66(4):872-89. PubMed ID: 17927700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy.
    Hiller S; Wasmer C; Wider G; Wüthrich K
    J Am Chem Soc; 2007 Sep; 129(35):10823-8. PubMed ID: 17691781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR studies of interactions between periplasmic chaperones from uropathogenic E. coli and pilicides that interfere with chaperone function and pilus assembly.
    Hedenström M; Emtenäs H; Pemberton N; Aberg V; Hultgren SJ; Pinkner JS; Tegman V; Almqvist F; Sethson I; Kihlberg J
    Org Biomol Chem; 2005 Dec; 3(23):4193-200. PubMed ID: 16294247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (19) F NMR spectroscopy as a probe of cytoplasmic viscosity and weak protein interactions in living cells.
    Ye Y; Liu X; Zhang Z; Wu Q; Jiang B; Jiang L; Zhang X; Liu M; Pielak GJ; Li C
    Chemistry; 2013 Sep; 19(38):12705-10. PubMed ID: 23922149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR.
    Pellecchia M; Sebbel P; Hermanns U; Wüthrich K; Glockshuber R
    Nat Struct Biol; 1999 Apr; 6(4):336-9. PubMed ID: 10201401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy.
    Hänsel R; Foldynová-Trantírková S; Löhr F; Buck J; Bongartz E; Bamberg E; Schwalbe H; Dötsch V; Trantírek L
    J Am Chem Soc; 2009 Nov; 131(43):15761-8. PubMed ID: 19824671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy.
    Meiler J; Baker D
    J Magn Reson; 2005 Apr; 173(2):310-6. PubMed ID: 15780923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in solution NMR: fast methods and heteronuclear direct detection.
    Felli IC; Brutscher B
    Chemphyschem; 2009 Jul; 10(9-10):1356-68. PubMed ID: 19462391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective incorporation of 19F-labeled Trp side chains for NMR-spectroscopy-based ligand-protein interaction studies.
    Leone M; Rodriguez-Mias RA; Pellecchia M
    Chembiochem; 2003 Jul; 4(7):649-50. PubMed ID: 12851935
    [No Abstract]   [Full Text] [Related]  

  • 20. Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies.
    Züger S; Iwai H
    Nat Biotechnol; 2005 Jun; 23(6):736-40. PubMed ID: 15908942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.