BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22167688)

  • 1. Determining protein dynamics from ¹⁵N relaxation data by using DYNAMICS.
    Fushman D
    Methods Mol Biol; 2012; 831():485-511. PubMed ID: 22167688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein dynamics by ¹⁵N nuclear magnetic relaxation.
    Ferrage F
    Methods Mol Biol; 2012; 831():141-63. PubMed ID: 22167673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the overall rotational diffusion of a protein from 15N relaxation measurements and hydrodynamic calculations.
    Blake-Hall J; Walker O; Fushman D
    Methods Mol Biol; 2004; 278():139-60. PubMed ID: 15317996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics.
    Ishima R
    Top Curr Chem; 2012; 326():99-122. PubMed ID: 21898206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Protein Dynamics Using Multifield Variable Temperature NMR Relaxation and Molecular Dynamics Simulation.
    Busi B; Yarava JR; Hofstetter A; Salvi N; Cala-De Paepe D; Lewandowski JR; Blackledge M; Emsley L
    J Phys Chem B; 2018 Oct; 122(42):9697-9702. PubMed ID: 30277399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast evaluation of protein dynamics from deficient
    Jaremko Ł; Jaremko M; Ejchart A; Nowakowski M
    J Biomol NMR; 2018 Apr; 70(4):219-228. PubMed ID: 29594733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Side chain dynamics in unfolded protein states: an NMR based 2H spin relaxation study of delta131delta.
    Choy WY; Shortle D; Kay LE
    J Am Chem Soc; 2003 Feb; 125(7):1748-58. PubMed ID: 12580600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing protein side chain dynamics via 13C NMR relaxation.
    Yang D
    Protein Pept Lett; 2011 Apr; 18(4):380-95. PubMed ID: 21222636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy.
    Chevelkov V; Fink U; Reif B
    J Biomol NMR; 2009 Sep; 45(1-2):197-206. PubMed ID: 19629713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates.
    Korzhnev DM; Skrynnikov NR; Millet O; Torchia DA; Kay LE
    J Am Chem Soc; 2002 Sep; 124(36):10743-53. PubMed ID: 12207529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of intermediate exchange phenomena.
    Kempf JG; Loria JP
    Methods Mol Biol; 2004; 278():185-231. PubMed ID: 15317998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessing ns-micros side chain dynamics in ubiquitin with methyl RDCs.
    Farès C; Lakomek NA; Walter KF; Frank BT; Meiler J; Becker S; Griesinger C
    J Biomol NMR; 2009 Sep; 45(1-2):23-44. PubMed ID: 19652920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in solid-state relaxation methodology for probing site-specific protein dynamics.
    Lewandowski JR
    Acc Chem Res; 2013 Sep; 46(9):2018-27. PubMed ID: 23621579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G.
    Hall JB; Fushman D
    J Biomol NMR; 2003 Nov; 27(3):261-75. PubMed ID: 12975584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.
    Wei Q; Chen J; Mi J; Zhang J; Ruan K; Wu J
    Chemistry; 2016 Jul; 22(28):9556-64. PubMed ID: 27276173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RING NMR dynamics: software for analysis of multiple NMR relaxation experiments.
    Beckwith MA; Erazo-Colon T; Johnson BA
    J Biomol NMR; 2021 Jan; 75(1):9-23. PubMed ID: 33098475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR spin relaxation methods for characterization of disorder and folding in proteins.
    Bracken C
    J Mol Graph Model; 2001; 19(1):3-12. PubMed ID: 11381530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.
    Larsson G; Martinez G; Schleucher J; Wijmenga SS
    J Biomol NMR; 2003 Dec; 27(4):291-312. PubMed ID: 14512728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins.
    Salvi N; Abyzov A; Blackledge M
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14020-14024. PubMed ID: 28834051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-decoupled CPMG: a better experiment for measuring (15)N R2 relaxation in disordered proteins.
    Yuwen T; Skrynnikov NR
    J Magn Reson; 2014 Apr; 241():155-69. PubMed ID: 24120537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.